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Abstract Tropical cyclone (TC) rainfall is an important hazard. Radial rainfall patterns of intense over‐
ocean TCs under global warming are investigated using the MRI HighRes Coupled Model Intercomparison
Project Phase 6 simulation with the SSP5‐8.5 high‐emission scenario. These patterns are characterized by four
parameters: rainfall at the cyclone center (To) , maximum rainfall (Tm) , radius of maximum rainfall (Rm) , and e‐
folding radius (Re) . We find Tm strongly correlates (r = 0.8) with a moisture convergence proxy—boundary‐
layer maximum wind times column moisture divided by the radius of maximum wind—across different
intensities and under climate change. Under warming, mean Tm and To increase by 8.65%/K and 8.86%/K, while
Rm and Re shrink by 1.03%/K and 1.79%/K, respectively. Notably, under warming, Tm exhibits greater
sensitivity to TC intensity, and its increases are mainly attributed to column moisture increase.

Plain Language Summary Tropical cyclones can bring heavy rainfall, which poses significant risks
to communities. In this study, we looked at how rainfall is distributed around a cyclone using four key
measurements: the rainfall at the center of the cyclone, the maximum rainfall, the distance from the center to
where the maximum rainfall occurs, and how quickly the rainfall decreases with distance. We found that the
maximum rainfall is closely related to a combination of the storm's wind speed and the amount of moisture in
the atmosphere, divided by the distance to where the maximum wind occurs. This relationship remains
consistent even in a warmer climate. We also found that as the climate warms, the maximum rainfall amount
increases by about 8%–9% per degree of warming mainly due to increased moisture in the atmosphere. The
areas where the intense rainfall occurs shrink slightly, suggesting more compacted rainfall patterns under
warming.

1. Introduction
Tropical cyclones (TC) can bring heavy and persistent precipitation over several days during their passages,
inducing devastating flash floods and landslides that cause enormous societal and economic losses (Knutson
et al., 2020; Liu et al., 2019). Given the ongoing rise in global temperatures resulting from greenhouse gas
emissions, there is considerable interest in understanding future changes in TC precipitation (Shi et al., 2024).
With ongoing advancements in computational power, cutting‐edge high‐resolution General Circulation Models
(GCMs) have emerged, markedly enhancing the simulation of global TC activity and their structural charac-
teristics (Roberts et al., 2020). In this study, we utilize the MRI HighRes simulation from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) High Resolution Model Intercomparison Project (HighResMIP),
which features a horizontal grid resolution as fine as 25 km, a significant improvement over traditional GCMs that
typically use coarser grids of hundreds of kilometers. We chose this simulation for its extended simulation period
(2015–2099) under the high‐emission SSP5‐8.5 scenario, which projects pronounced warming and distinguishes
anthropogenic climate change signals from natural internal variability, enabling a more precise analysis of global
TC rainfall pattern changes under warming.

The radial distribution of TC rainfall is a fundamental metric in characterizing the TC rainfall. This distribution
can be described by (Lonfat et al., 2004),
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Psym =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

To + (Tm − To) (
R
Rm
), if R<Rm

Tm exp (
Rm − R
Re

), if R≥Rm

(1)

where To is the rain rate at the center of the TC, Tm is the maximum rain rate in the radial profile of TC rainfall, Rm
is the radius of the maximum rain rate, and Re is the e‐folding radius of the maximum rain rate, measuring the
spatial decay rates of TC rainfall from Tm outward from the center (e.g., Kim et al., 2022; Lonfat et al., 2004). In
real‐world TCs, the eye typically lacks rainfall (e.g., Emanuel, 2018), but To is a relevant variable in this study
because the 25 km resolution of the MRI HighRes CMIP6 simulation cannot resolve TC eyes, leading to modeled
rainfall at the center. Additionally, Re reflects the spatial extent of TC rainfall (Tuleya et al., 2007). The rainfall
intensifies linearly with radius from the cyclone center up to Rm and then declines exponentially. In previous
studies (e.g., Stansfield & Reed, 2023), the TC radial rainfall pattern for a certain climate period is described by
the mean TC radial rainfall profile, which is often derived by averaging multiple radial rainfall profiles. The mean
TC rainfall profiles are then compared between different climate periods to describe the changes in the TC radial
rainfall pattern. However, the changes in the four rainfall distribution parameters (Tm, To, Re, and Rm) are often
overlooked and underinterpreted, despite being critical for explaining the underlying causes of radial rainfall
profile changes. Unlike prior work, our study uniquely targets these parameters to provide a detailed physical
understanding of TC rainfall changes under warming.

In this study, we aim to investigate changes in TC radial rainfall pattern using the MRI HighRes CMIP6
simulation, examining how Tm, To, Re, and Rm evolve under warming. By reassessing the TC wind‐rain re-
lationships within this climate data set, we identify the primary drivers of Tm, To, Re, and Rm and develop an
improved parametric rainfall model, to better interpret their changes under warming. Our analysis focuses on
individual TC snapshots, with an emphasis on intense over‐ocean TCs due to their greater destructive potential
and well‐preserved structures compared to weaker TCs or those disrupted by landfall.

2. Methods
2.1. Data

The data (Mizuta et al., 2019) comes from a high‐resolution climate simulation provided by the HighResMIP,
which is part of the CMIP6. This simulation was conducted using Japan's Meteorological Research Institute–
Atmospheric GCM version 3.2 (MRI‐AGCM‐M3‐2), a model with a horizontal grid resolution of 25 km. The
simulation belongs to HighResMIP's “highresSST‐future” experiments. In this setup, the model is forced with
pre‐set sea surface temperatures (SSTs) based on a high‐emission scenario (SSP5‐8.5), which projects a future
with significant global warming. By using these fixed future SSTs, the model focuses solely on atmospheric
responses to warmer oceans without simulating interactive ocean dynamics. This product is known for its
capability in simulating strong TCs (Roberts et al., 2020). It differs from other HighResMIP products due to its
extended simulation period, being the only or one of few data sets providing continuous simulation from 2015 to
2099 with 25 km horizontal grid resolution. The product is available at daily time intervals.

2.2. TC Tracking and Metrics

TempestExtremes software package is used to track TCs based on daily output from the MRI HighRes CMIP6
simulation (Ullrich et al., 2021). This TC tracking algorithm identifies cyclones by detecting a nearby sea‐level
pressure minimum coinciding with an upper‐level warm core, with key parameters following the TC tracking
approach for ERA5 described by Ullrich et al. (2021). TC searching is restricted to 30°S–30°N to exclude samples
undergoing extratropical cyclone transition. Detailed command lines used for tracking are provided in Table S1 in
Supporting Information S1. Cyclones are classified into landfall and over‐ocean TCs based on whether their low‐
pressure centers are within 300 km of the coastline; this study focuses exclusively on over‐ocean TCs. TC
snapshots are further categorized by intensity (Vmax10m ) , derived from the 10 mwind speed output from the model,
into tropical storm (TS, CAT0, 17–33 m/s) and Categories 1–5 (CAT1–CAT5) using the Saffir–Simpson Hur-
ricane Wind Scale.
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Two climate periods are examined: the present climate (2015–2034) and the future climate (2080–2099). In the
present climate, TempestExtremes identified 6,524 TC snapshots, distributed as follows: 3,677 TS, 1,006 CAT1,
452 CAT2, 423 CAT3, 691 CAT4, and 275 CAT5. For the future climate, 5,242 snapshots were identified, with a
distribution of 2,620 TS, 702 CAT1, 365 CAT2, 427 CAT3, 751 CAT4, and 377 CAT5. Intense TCs in this study
refer to snapshots reaching at least CAT3.We compared themwith observations from the International Best Track
Archive for Climate Stewardship (IBTrACS, Knapp et al. (2010)) over 2005–2024, processed to daily frequency
to match the MRI data. IBTrACS yields 7,803 snapshots: 4,941 TS, 1,241 CAT1, 629 CAT2, 448 CAT3, 444
CAT4, and 100 CAT5. Relative to IBTrACS, the present climate simulation underestimates TS and CAT1–CAT3
frequencies (e.g., 3,677 vs. 4,941 for TS) but overestimates CAT4 (691 vs. 444) and CAT5 (275 vs. 100),
suggesting a bias toward higher intensities. In the future climate, the 5,242 snapshots show a marked decrease in
TS frequency (2,620) and increases in CAT4 (751) and CAT5 (377), indicating a shift toward more intense TCs,
consistent with warming projections (Knutson et al., 2020).

2.3. TC Rainfall Parametric Models

2.3.1. PHRaMM

The physical drivers that cause the change of the four rainfall distribution parameters are simply assumed to be TC
intensity (Lonfat et al., 2007; Tuleya et al., 2007) and atmospheric moisture (Kim et al., 2022). In Parametric
Hurricane Rainfall Model with moisture (PHRaMM), the prediction of the four rainfall distribution parameters is
based on multiple linear regression using Vmax10m and total column water vapor (TCW) as independent explanatory
variables (Kim et al., 2022).

Tḿ = a1 + b1 ∗Vmax10m + c1 ∗TCW, (2a)

Tó = a2 + b2 ∗Vmax10m + c2 ∗TCW, (2b)

Ré = a3 + b3 ∗Vmax10m + c3 ∗TCW, (2c)

Rḿ = a4 + b4 ∗Vmax10m + c4 ∗TCW, (2d)

where the Tḿ, Tó, Ré, and Rḿ are fitted values. Hereafter, we use this primed notation (Tḿ, Tó, Ré, Rḿ) to represent
fitted values, while Tm, To, Re, and Rm refer to the actual values derived from radial rainfall profiles in the climate
data set. Following He et al. (2022), total column water vapor is calculated by,

∫

top

surface
q
dp
g
, (3)

where q is the specific humidity, g is the gravitational constant and dp represents the pressure difference between
different model levels. Unlike Kim et al. (2022) where TCW is derived based on conditions during the storm, the
TCW in this study is calculated based on the monthly mean of total column water vapor at the location of the
storm. The monthly mean TCW representing persistent background moisture conditions, yields a clearer signal of
the climatic drivers of rainfall, as opposed to the day‐to‐day TCW affected by the storm itself. Unlike TCW, which
is monthly averaged, the other variables in this study are not monthly averaged to capture TC‐specific dynamics.

The primary limitation of PHRaMM lies in its low correlation between the fitted rainfall distribution parameters
(e.g., Tm) and the observed one (see Table 1 in Kim et al. (2022)), suggesting its low capacity in capturing the TC
rainfall field variability.

2.3.2. PHRaM_S

Motivated by better capturing the TC rainfall field variability, the parametric hurricane rainfall model for
symmetric component (PHRaM_S) is developed by exploring the TC wind‐rain relationship in the MRI HighRes
CMIP6 climate data set. Predictor variables for PHRaM_S were selected through a combination of correlation
analysis and physical reasoning (detailed in Section 4), prioritizing those with the strongest correlations to each

rainfall distribution parameter. For Tm and To, we used TCW Vmax850
Rmw850

—where Vmax850 and Rmw850
represent the
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maximum wind and radius of maximum wind at 850 hPa—because it captures moisture convergence, the key

driver of inner‐core rainfall, by combining moisture (TCW) and convergence (Vmax850
Rmw850

) . For Re and Rm, we related

them to Rmw850
and Vmax850, respectively, as correlation analysis showed these variables correlate better than TCW

or Vmax10m.

Tḿ = a1 + b1 (TCW
Vmax850
Rmw850

), (4a)

Tó = a2 + b2 (TCW
Vmax850
Rmw850

), (4b)

Ré = a3 + b3 (Rmw850 ), (4c)

Rḿ = a4 + b4 (Vmax850 ). (4d)

3. Radial Rainfall Patterns
The traditional approach to understanding the TC radial rainfall pattern changes under warming involves
analyzing the mean TC radial rainfall profiles. Figure 1a presents the mean radial rainfall profiles of intense over‐
ocean TCs for the present and future climates. These profiles are derived by averaging multiple profiles of over‐
ocean TC snapshots that reach at least Category 3. The radial rainfall profiles exhibit a maximum near the cyclone
center at 25 km for both climate periods. The maximum rainfall Tm decreases exponentially with increasing
distance from the cyclone center. Additionally, the rainfall at the center is slightly smaller than the radial rainfall
maximum, suggesting that the TC eyewall is not well resolved. In the future climate, the mean SST increases by
2.26 K relative to the present climate. The corresponding precipitation sensitivity is shown in Figure 1b. The TC
rainfall shows super Clausius‐Clapeyron (C‐C) scaling at the center and negative sensitivity at the TC outer region
(beyond 325 km). These results contrast with recent observation‐based studies (e.g., Tu et al., 2021) that suggest
decreasing inner core precipitation and enhanced outer rainband precipitation in the recent two decades. However,
the super C‐C scaling in the inner core is consistent with many modeling‐based studies (e.g., Liu et al., 2019). The
discrepancy with Tu et al. (2021) may arise from their analysis of a shorter, modestly warming period (0.5°C from
1999 to 2018), where trends could be influenced by natural variability or over‐land TCs. While much is known
about how radial rainfall patterns change, the underlying causes of these shifts remain unclear.

Figure 1. The rainfall radial distribution (a) of over‐ocean TCs (Category 3 and above) and the corresponding sensitivity per
degree of warming (b). The mean Tm (mm/hr), To (mm/hr), Re (km), and Rm (km) are listed in panel (a). The text in black font
indicates values for the current climate period, while the text in red font represents values for the future climate period.
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This study seeks to explore the underlying causes of the radial rainfall pattern shifts under warming by examining
changes in Tm, To, Re, and Rm. The mean values of these parameters—denoted as Tm, To, Re, and Rm—for the
present and future climates are presented in Figure 1a. Notably, these mean parameter values differ from those
inferred directly from the mean radial profile in Figure 1a. For instance, Tm in the present climate based on the
mean profile is 14.88 mm/hr, whereas the Tm is slightly larger at 15.86 mm/hr. This difference occurs because, in
the mean radial profile, the averaging over different profiles smooths out Tm. Relative to the present climate, the
Tm and To increase by 19.54% (8.65%/K) and 20.09% (8.86%/K) respectively, in the future climate. The Rm shows
a slight decrease from 31.15 to 30.42 km. Considering Rm is in the grid size of 25 km, the slight change in Rm is
probably due to the model's inability to capture its variation. The Re decreases by 4.05% (1.79%/K) in the future
climate. The shrinking Re under warming indicates a faster decay of rainfall from the radial maximum under
warming. The decreased rainfall in the TC outer region under warming (Figure 1) is likely related to this faster
decay.

4. TC Wind‐Rain Relationships
In this section, we investigate the relationships between TC wind and rainfall within the MRI climate data set to
elucidate the physical drivers of the radial rainfall parameters: Tm, To, Rm, and Re. Our objectives are twofold:
first, to identify the key factors controlling changes in Tm, To, Rm, and Re under warming conditions; and second,
to leverage the most influential drivers to construct the PHRaM_S.

The inner core precipitation has been found to be positively correlated with TC intensity measured by the surface
wind maximum Vmax10m (e.g., Xi & Lin, 2022; Xi et al., 2022). Figure 2a shows the correlation coefficients (r)
between Tm and explanatory variables for TC snapshots that reach CATn (where n ranges from 0 to 5). Tm shows
low correlations with Vmax10m within individual category groups. Figure 2b shows the same relationships except
for TC snapshots that reach at least CATn. Unlike Figure 2a, Tm shows high correlations with Vmax10m when all
TCs, including CAT0 tropical storms, are considered. As weaker TCs are increasingly excluded, the correlation
between Vmax10m and Tm drops (Figure 2b), which is probably related to decreased variabilities in Vmax10m. If only
intense TCs (CAT3+) are considered, the correlation coefficient drops to 0.39. In contrast, Vmax850 shows a much
stronger correlation with Tm (Figures 2a and 2b) and maintains a high correlation even for the strongest portion of
TCs. Although Vmax850 and Vmax10m are often assumed to be highly correlated, we found a decline in correlation
between Vmax850 and Vmax10m as weaker TCs are increasingly excluded (Figure 2c). Compared to the surface level
where the circulation is affected by surface friction, the TC circulation is arguably better represented by the
850 hPa level, which is approximately at the top of the hurricane boundary layer and less affected by surface
friction.

The moisture convergence into the TC center drives the upward moisture flux and creates convective precipitation
near the cyclone center (Liu et al., 2019). Assuming the radial inflow velocity (Vr) is proportional to the maximum
wind (Vmax) at the radius of maximum wind (Rmw) and Vr is zero near the TC center, the radial convergence Vr

Rmw

is proportional to Vmax
Rmw

. Considering the environmental moisture, the moisture convergence into the TC can

therefore be related to TCW Vmax
Rmw

. In our climate simulation data set, Tm is found to be positively related to TCW,
negatively related to Rmw850

, and positively related to Vmax850 (Figures 2a and 2b). These relationships are
consistent with previous studies that suggest increased moisture (Kim et al., 2022), a shrinking radius of
maximumwind (Yu et al., 2022), and stronger TC intensity (Tuleya et al., 2007) correspond to an enhanced radial

rainfall maximum. The moisture convergence proxy, TCW Vmax850
Rmw850

, is strongly correlated with Tm (Figures 2a and

2b) and is used to predict Tḿ in the PHRaM_S. The PHRaMM serves as the benchmark model. The performance
of PHRaM_S and PHRaMM in predicting Tm is evaluated using correlation coefficients between the fitted Tḿ and
the actual Tm derived from radial rainfall profiles in the climate data set. For intense TCs (CAT3+), PHRaMM's
correlation coefficient declines sharply (Figure 2d), whereas PHRaM_S remains stable, consistently achieving
higher correlation coefficients across these strong storms.

To, rainfall at TC center, shares a similar correlation analysis with Tm (Figures S1a, S1b, and S1d in Supporting
Information S1). To is strongly correlated with Tm (Figure S1c in Supporting Information S1) because the inner

core is not well resolved in the 25‐km resolution GCM simulation. However, TCW Vmax850
Rmw850

correlates less strongly
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with To than with Tm (Figure 2 and Figure S1 in Supporting Information S1), probably because subsidence or
other processes also influence precipitation at the center of the TC.

Re, the e‐folding radius, measures the rainfall spatial extent. Kim et al. (2022) reported that Re is negatively
correlated with Vmax10m, which we confirm when all TCs are included (Figure 3a). However, the negative cor-
relation weakens and turns slightly positive for very intense TCs (e.g., CAT4+). Therefore, Vmax10m is not a robust
explanatory variable accounting for Re change. Vmax850 shows a more consistent, though still weak, negative
correlation (Figure 3a), while TCW’s weak correlation suggests minimal influence from environmental moisture.
Yu et al. (2022) linked the TC rainfall distribution to TC sizes. Accordingly, we investigate the correlation be-
tween Re and TC sizes. The TC out core sizes are measured by the radius of gale‐force wind, R17. The TC inner‐
core sizes are measured by the radius of maximum wind. Both R17 at the surface and 850 hPa are positively

Figure 2. (a) The correlation coefficients between explanatory variables and Tm for CAT0, CAT1, CAT2, CAT3, CAT4, and CAT5 TCs. (b) Same as (a), except for
CATn+ TCs. The term CATn+ refers to the tropical cyclone snapshots that reach at least CATn, where n ranges from 0 to 4. (c) The correlation coefficients between
Vmax at the surface (Vmax10m ) and Vmax at 850 hPa (Vmax850 ) for CATn+ TCs. (d): The correlation coefficients between Tm and T ḿ from Parametric Hurricane Rainfall Model
with moisture and PHRaM_S. The error bar represents the standard deviation of correlation coefficients across the ten models generated using a leave‐one‐out cross‐
validation subsampling method, as described by Kim et al. (2022). All depicted correlations meet the p< 0.05 threshold.
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correlated with Re. Rmw850
has the strongest positive correlation with Re across subsets of TCs, indicating that a

larger inner core corresponds to a slower spatial decay of the radial rainfall maximum. Rmw850
is therefore selected

as predictor in PHRaM_S. The simple linear regression is adopted because we found a multiple linear regression
model using additional variables such as environmental moisture leads to high model uncertainties, with
regressed coefficients changing significantly when different subset samples are used to train the model.
Nevertheless, the PHRaM_S shows significantly higher correlation coefficients than the PHRaMM (Figure 3c).

Rm, the radius of maximum rainfall, shows weak correlations with TC size, wind speed, and moisture (Figure 3b).
The correlation with Vmax10m (Vmax850 ) shifts from negative to positive as weaker TCs are excluded, contrasting
with observational studies reporting a negative trend (e.g., Kim et al., 2022; Lonfat et al., 2004). This discrepancy
may stem from their inclusion of tropical storms, inflating Rm differences, or from unrealistic wind‐rain re-
lationships in our 25 km resolution model, which struggles to resolve eyewall structures (Shi et al., 2024). For

Figure 3. (a) The correlation coefficients between explanatory variables and Re for CATn+ TCs. (b) Same with (a) except for Rm. (c) The correlation coefficients
between Re and Ré from Parametric Hurricane Rainfall Model with moisture and PHRaM_S. (d) Same as (c) except for Rm and Rḿ. The CATn+ TCs means instant
tropical cyclone samples that reach at least CATn, where n ranges from 0 to 4. The error bar represents the standard deviation of correlation coefficients across the ten
models generated using a leave‐one‐out cross‐validation subsampling method, as described by Kim et al. (2022). All depicted correlations meet the p< 0.05 threshold.
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intense TCs (CAT3+), Vmax850 offers the strongest correlation with Rm
(Figure 3b) and is used in PHRaM_S (Figure 3d), again favoring simple
regression due to coefficient instability in multiple regression.

5. Rainfall Pattern Change Interpretation

The PHRaM_S is used to interpret the changes in Tm, To, Re, and Rm for
intense over‐ocean TCs. Table 1 lists the regressed coefficient for the four
rainfall distribution parameters in the present climate and future climate. The
increase in Tm under warming is attributed to the increases of intercept value

(a1) , slope (b1) , and TCW
Vmax850
Rmw850

. To separate the effects of increased inter-

cept, slope, and TCW Vmax850
Rmw850

, the Tm change caused by each individual factor is

calculated. The increases of TCW Vmax850
Rmw850

, intercept, and slope contribute to the

increase of Tm at 75.49%, 12.90%, and 9.26% respectively.

The mean TCW Vmax850
Rmw850

increases by 21.60% (9.56%/K) in the future climate

and is the dominant factor leading to the Tm increase. Following the idea of

moisture decomposition in Shi and Durran (2015), the increase of TCW Vmax850
Rmw850

can be further decomposed into the dynamic contribution and thermodynamic
contribution.

[δ(TCW
Vmax850
Rmw850

)]
dyna

= TCW δ(
Vmax850
Rmw850

), (5a)

[δ(TCW
Vmax850
Rmw850

)]
ther
=
Vmax850
Rmw850

δ(TCW), (5b)

where TCW, Vmax850
Rmw850

represent the mean TCW, Vmax850
Rmw850

between present climate and future climate respectively; δ

represents the difference between present and future climates. The dynamic contribution is related to the change in
Vmax850
Rmw850

, and the thermodynamic contribution is related to the change in TCW. The increase in TCW Vmax850
Rmw850

is

dominantly from the thermodynamic contribution at 82.53%. In contrast, the dynamic contribution only accounts
for 9.81%. Therefore, the increase in Tm is primarily due to the increase in atmospheric moisture. This is
consistent with previous studies (Stansfield & Reed, 2023) suggesting that the increase in extreme TC precipi-
tation rate under warming is mainly from the increase of atmospheric moisture.

The intercept value a1 implies the background Tm in the absence of cyclones. Under warming, the a1 value in-
creases by 6.03% (2.67%/K). This value is less than the C‐C scaling, which is reasonable because the background
rainfall corresponds to a non‐extreme precipitation scenario. The non‐extreme precipitation typically increases at
a rate smaller than the C‐C scaling (e.g., Chen & Shi, 2023).

The slope b1, reflecting the sensitivity of Tm to TCW Vmax850
Rmw850

, increases slightly by 2.59% (1.15%/K) in the future

climate. In contrast, PHRaMM's regression coefficient for Vmax10m surges by 79.41% (35.14%/K), challenging Kim
et al. (2022)'s assumption of constant sensitivity of Tm to TC intensity under warming and suggesting a nonlinear
relationship between the TC inner core rain rates and the TC intensity. This nonlinearity likely originates from
elevated background moisture levels under warming, which provides TCs with a greater reservoir of condensable
water, amplifying rainfall production, particularly in the inner core where intense convergence are most pro-
nounced. We found TCW rises by 17.59% (7.78%/K) in this study. Unlike PHRaMM, which treats cyclone

dynamics and moisture as independent, the PHRaM_S captures their interactive effects via TCW Vmax850
Rmw850

yielding a

more stable scaling with Tm. The sensitivity of Tm to Vmax850
Rmw850

, without moisture component, increases by 24.99%

Table 1
The Intercepts, Regression Coefficients for Tm, To, Re, and Rm Using
PHRaM_S, and Correlation Coefficient Between Fitted and Actual
Parameters

Parameter Intercept Slope Corr. Coeff.

(a) Present climate

Tm a1 = 6.63 (0.10) b1 = 0.77 (0.010) 0.82 (0.0056)

To a2 = 7.31 (0.17) b2 = 0.56 (0.014) 0.65 (0.0078)

Re a3 = 46.81 (1.37) b3 = 0.37 (0.013) 0.64 (0.0079)

Rm a4 = 11.57 (0.65) b4 = 0.70 (0.021) 0.30 (0.0108)

(b) Future climate

Tm a1 = 7.03 (0.09) b1 = 0.79 (0.006) 0.84 (0.0065)

To a2 = 7.84 (0.17) b2 = 0.61 (0.013) 0.69 (0.0098)

Re a3 = 47.44 (1.45) b3 = 0.35 (0.014) 0.62 (0.0116)

Rm a4 = 7.93 (0.68) b4 = 0.79 (0.020) 0.37 (0.0113)

Note. Data are from ocean TC snapshots reaching at least category 3. The
upper panel represents the present climate, and the lower panel represents the
future climate. Parentheses denote the standard deviation of each coefficient
across ten models, derived from ten subsampling groups using the
leave‐one‐out cross‐validation method (Kim et al., 2022). Units for a1, a2, a3,
and a4 are mm/hr, mm/hr, km, and km, respectively; units for b1, b2, b3, and b4
are m3/kg, m3/kg, km/km, and s, respectively.
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(11.06%/K) in the future climate. This heightened sensitivity (compared to b1) suggests that unaccounted
moisture effects substantially accelerate the rainfall maximum increase with TC intensity under warming.

Similar to Tm, the increase in To is dominantly from the increase in TCW Vmax850
Rmw850

at 60.48%. Re is parameterized by

Rmw850
, and the decreased Re is attributed to the decrease in slope b3 and Rmw850

. The mean Rmw850
decreases slightly

by 2.89% (1.28%/K) in the future climate. The decrease in Rmw850
dominates the decrease of Re, accounting for

81.60%. The intercept (b3) and slope (a3) changes account for − 15.83% and 36.56% respectively for the Re
decrease. The Rm values are at 25 km grid spacing, leading to difficulties in their predictions. Rm is predicted by
Vmax850 and the Rm decreases slightly from 31.15 to 30.42 km. The Rm shrinking is not well interpreted by the
regression model since the intercept and slope change significantly in different climates (Table 1). The 25 km grid
resolution limits the capture of Rm, resulting in Rm values being narrowly distributed across a few discrete values,
especially for the intense TCs that we focus on.

6. Discussions and Conclusions
GCMs have been extensively utilized to explore TC rainfall patterns under warming, yet many previous studies
focus on statistical summaries rather than the physical mechanisms driving rainfall patterns. This is likely due to
the coarse resolutions of GCMs, which struggle to resolve vertical motions and inner‐core dynamics. In this study,
we fill the gaps by investigating shifts and physical drivers of four key rainfall distribution parameters—rainfall at
the TC center (To) , maximum rainfall (Tm) , maximum rainfall radius (Rm) , and e‐folding radius (Re)—critical to
describing the radial rainfall field, using the MRI HighRes CMIP6 simulation. We find mean Tm and To (Tm and
To) increase by 8.65%/K and 8.86%/K, respectively, driven primarily by thermodynamic effects (enhanced
moisture), while mean Rm and Re (Rm and Re) decrease by 1.03%/K and 1.79%/K, reflecting a more compact
rainfall structure tied to a shrinking inner core.

This study also highlights a nonlinear relationship between TC intensity and inner‐core precipitation under
warming, where moisture amplifies sensitivity. The scaling of Tm with Vmax10m rises sharply (35.14%/K),
challenging assumptions of constant sensitivity (e.g., Kim et al., 2022). Additionally, Tm strongly correlates

(r = 0.8) with a moisture convergence proxy (TCW Vmax850
Rmw850

) , with 850 hPa variables showing significantly

stronger correlations than surface metrics, suggesting TC circulation is better captured at the boundary layer
top. This scaling with the moisture convergence proxy remains consistent across climates and TC categories,
highlighting its reliability. These findings have implications for developing statistical TC rainfall models,
particularly in how moisture and dynamic components are treated. The independent consideration of the
moisture component (e.g., humidity) and the dynamic component (e.g., wind, vorticity) may lead to signif-
icant variations in the regressed coefficients. Using variables at 850 hPa, in the lower troposphere just above
the boundary layer, instead of surface metrics could improve model accuracy by better capturing TC cir-
culation and its interactions with moisture.

Despite its 25 km resolution—advanced for GCMs (Roberts et al., 2020)—the MRI data set has limitations. It
cannot resolve TC eyes or distinct outer rainbands, potentially skewing To and Tm. Furthermore, Davis (2018)
highlights that 25 km grids cannot accurately simulate Category 4 and 5 TCs—prevalent in our study—without
errors in storm size, affecting both wind fields and related rainfall metrics like Rm and Re. Reliance on a single
model also limits generalizability, as TC rainfall structures vary across GCMs (Moon et al., 2022). We stress that
our results are specific to this simulation and require cautious interpretation. Future studies with <10 km reso-
lution could improve parameter estimates. Despite these constraints, our framework—analyzing wind‐rain re-
lationships, developing parameterized models for key rainfall parameters, and interpreting parameter changes—
can be extended to other high‐resolution models, offering a pathway to further explore TC rainfall dynamics
across diverse climate simulations.

Data Availability Statement
TempestExtremes software is available at Ullrich et al. (2024). The MRI HighRes CMIP6 data is available at
Mizuta et al. (2019).
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