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A B S T R A C T

As climate change intensifies, understanding heat vulnerability – defined as the susceptibility of populations to 
the adverse effects of heat waves – becomes increasingly critical for effective adaptation and management 
strategies. This study uses an “Exposure-Sensitivity-Adaptation” framework combined with GeoDetector to assess 
heat vulnerability in Jinan and Guangzhou. The analysis incorporates Land Surface Temperature (LST), 
Normalized Difference Vegetation Index (NDVI), population density, Points of Interest (POI), and socioeconomic 
data. These factors are used to construct a comprehensive index system and a vulnerability measurement model 
focused on assessing the heat vulnerability of older populations. This study identifies vulnerable spatial regions 
and reveals the key factors driving heat vulnerability, offering valuable insights into its spatial dynamics and 
underlying causes in urban areas. The results show significant spatial disparities in heat vulnerability between 
and within the two cities. In Guangzhou, the core urban districts, such as Tianhe and Yuexiu, exhibit lower 
vulnerability due to robust infrastructure, higher disposable incomes, and extensive green space coverage. In 
contrast, peripheral districts, including Conghua and Zengcheng, face higher vulnerability due to uneven 
resource distribution and slower urbanisation. In Jinan, the urban core, including Shizhong and Licheng districts, 
demonstrates lower vulnerability supported by modern infrastructure and medical resources, while peripheral 
areas, such as Shanghe County and parts of Zhangqiu, show heightened vulnerability driven by ageing pop-
ulations, limited healthcare, and lower economic development. At the community level, high-risk areas are 
clustered in economically disadvantaged neighbourhoods and regions with dense older populations. In 
Guangzhou, high-vulnerability communities (e.g., Beijing, Binjiang, and Datang) are in peripheral districts or 
underdeveloped areas with limited resources. Similarly, in Jinan, high-risk communities (e.g., Guanzhaying, 
Hongjialou, and Huanghe) are concentrated in peripheral counties and older urban neighbourhoods with ageing 
populations. To mitigate heat vulnerability, the study recommends enhancing urban green spaces, retrofitting 
ageing infrastructure, and implementing community-specific education campaigns. These findings provide 
actionable insights into tailoring urban planning and climate adaptation strategies to improve heat resilience, 
particularly in rapidly urbanising cities with ageing populations and socio-economic inequalities.

1. Introduction

The rise in global temperatures has significantly increased the fre-
quency, intensity, and duration of extreme heat events, posing severe 
risks to ecosystems, human health, and socio-economic stability [1]. By 
2100, global megacities are expected to experience more frequent and 
intense heatwaves, with low-income and rapidly urbanising cities in 
southern Asia, such as those in India and Southeast Asia, dispropor-
tionately affected [2]. Similar trends are projected for urban regions 

worldwide. Studies estimate that by 2050, over 350 million people in 
cities across the globe will be exposed to deadly heat conditions for at 
least 20 days per year, even if greenhouse gas emissions are dramatically 
curbed [3]. Regions as diverse as North America, Europe, the Middle 
East, and Australia all face substantially increased threats of heatwaves 
under various climate scenarios [4,5]. In Africa, climate projections 
indicate that heatwaves, which are currently rare, could become regular 
occurrences by 2040 in half of the region’s areas due to ongoing climate 
changes [6]. In Japan and South Korea, cities like Tokyo and Seoul have 
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already seen increased heat-related mortality, which could become 
more severe as temperatures rise [7]. In China, projections suggest that 
by the end of the 21st century, up to 1.18 billion people could be affected 
by heat waves, underscoring the urgent need for robust heat risk man-
agement strategies [8].

The health risks associated with extreme heat are particularly severe. 
Several studies have linked heat waves to higher morbidity and mor-
tality rates from heat-related conditions, such as cardiovascular diseases 
and respiratory issues [9–11]. Evidence of increased morbidity and 
mortality during heat waves in China emphasises the need for a robust 
risk assessment framework to inform early warning systems and public 
health interventions [12].

In addition, China is facing a demographic transition, with its pop-
ulation aged 65 and older projected to more than double from 172 
million (12 % of the population) in 2020 to 366 million (26 %) by 2050 
[13]. This rapidly ageing population is particularly vulnerable to the 
impacts of climate change, especially extreme heat. Older adults face 
heightened heat-related health risks due to physiological changes asso-
ciated with ageing, such as decreased sweat gland output, reduced skin 
blood flow, and impaired thermoregulation, which weaken the body’s 
ability to cope with high temperatures [14]. Pre-existing health condi-
tions common among older populations, such as cardiovascular diseases 
and diabetes, further exacerbate their vulnerability, increasing the risk 
of heat-related morbidity and mortality [15]. Older adults living alone 
or with limited social networks often struggle to access cooling resources 
or receive timely assistance during heat waves, amplifying their risk of 
adverse outcomes [16]. Despite these well-documented vulnerabilities, 
few studies have explicitly examined how extreme heat affects older 
adults locally, particularly in rapidly ageing urban contexts like those in 
many Chinese cities [17]. This lack of attention is concerning given the 
unique challenges of urbanisation, social isolation, and disparities in 
access to adaptive resources.

Early research primarily focused on physical exposure to extreme 
heat using quantitative, data-driven approaches. For instance, El-Zein 
et al. [18] utilised a multi-criteria outranking approach to assess 
climate change vulnerability, explicitly focusing on heat stress in Syd-
ney. Hu et al. [19] employed daily maximum and minimum temperature 
data from meteorological stations to estimate hazards during extreme 
heat events (EHEs). Stéphenne et al. [20] integrated Earth Observation 
data with geospatial analyses to assess exposure in urban areas, 
emphasising the importance of combining diverse data sources. Kwon 
et al. [21] explored sensible heat flux to assess thermal vulnerability in 
Seoul, Korea, finding that identifying thermally vulnerable areas based 
on sensible heat flux was more objective and spatially accurate than 
using traditional temperature-based approaches. While these studies 
provided valuable insights into exposure, they often neglected broader 
socio-environmental factors.

Subsequent studies began incorporating more comprehensive 
frameworks, recognising the importance of social vulnerability and 
adaptive capacity. For example, Shih et al. [22] provided insights into 
heat vulnerability in subtropical regions through expert judgments, 
underscoring the complexities of incorporating socio-environmental 
factors into assessments. Puntub et al. [23] applied future-oriented 
vulnerability scenarios to address human heat stress in Bonn, Ger-
many, highlighting the importance of integrating climate trajectories 
and urban development scenarios. Similarly, Wu et al. [24] used remote 
sensing to map heat-health vulnerability in Karachi, redefining heat-
wave mortality risks and categorising vulnerability into different levels. 
These studies marked a shift toward multi-dimensional approaches but 
often lacked localised, community-specific analysis.

Despite these advancements, many earlier approaches were limited 
by their focus on isolated factors, such as temperature thresholds or 
demographic profiles, without fully considering the intersection of 
environmental, social, and infrastructural dimensions. Unlike earlier 
approaches, the ESA framework integrates environmental hazards, so-
cial vulnerability, and adaptive capacity to provide a nuanced 

understanding of vulnerability. Dong et al. [25] applied the ESA 
framework to map urban heat risks in megacities, demonstrating its 
ability to capture the interplay between heat stress, socio-economic in-
equalities, and infrastructural limitations. Similarly, Lo et al. [26] and 
Dubey et al. [27] employed the ESA framework to assess the spatial 
variability of heatwave risks, emphasising the importance of adaptive 
capacity in mitigating vulnerability. However, despite these studies 
using the ESA framework, they still fail to address localised and 
community-specific vulnerabilities, particularly in regions with distinct 
climatic and socio-economic characteristics.

This study builds on the ESA framework by incorporating remote 
sensing data, demographic indicators, and adaptation resources to assess 
the heat vulnerability of older populations in Jinan and Guangzhou, two 
Chinese cities with unique climatic and socio-economic contexts. While 
previous research has predominantly adopted macro-level assessments, 
often overlooking localised nuances, this study focuses on community- 
scale impacts with an emphasis on vulnerable older populations. By 
concentrating on community-scale impacts and integrating adaptation 
resources (e.g., metro access, healthcare facilities, and green spaces), 
this study offers a novel approach to evaluating heat vulnerability. This 
localised approach reveals how extreme heat uniquely affects vulnerable 
populations and provides insights with broader implications for urban 
planning and climate resilience in rapidly ageing and urbanising regions 
across Asia and globally.

This study has two main objectives: (1) to investigate the spatial 
distribution of high-temperature vulnerability in Jinan and Guangzhou 
and (2) to explore the driving factors contributing to heat vulnerability. 
Section 2 provides an overview of the study areas, and the data utilised. 
Section 3 outlines the methodology. Section 4 presents the results, and 
Section 5 discusses the main findings. Section 6 highlights the study’s 
limitations and identifies potential research directions.

2. Study cities and data

2.1. Study cities

Jinan and Guangzhou, with 161 and 170 communities, respectively, 
were selected as representative case studies of northern and southern 
Chinese cities (Fig. 1). Their climate, urban structure, and socioeco-
nomic development differences offer valuable insights for comparing 
how geographical context influences heat vulnerability distributions 
[12]. This comparative approach uncovers fundamental principles of 
urban heat vulnerability and provides a scientific basis for tailored 
adaptation strategies at the local level.

The city of Jinan, located in central-western Shandong (36◦40′N, 
117◦00′E), is an economic, political, and cultural hub. As of April 2024, 
Jinan comprises ten districts and two counties, covering 10,244 km2 

[28]. Jinan experiences a temperate continental climate, with an annual 
average temperature, precipitation, and sunshine of 15.4 ◦C, 638.3 mm, 
and 6.85 h per day, respectively [29]. In 2023, Jinan’s GDP reached 
CNY1.28 trillion (USD 1795.84 billion) with a population of 9.44 
million, of which 7.1 million (75.3 %) resided in urban areas [30]. 
Despite its economic success, Jinan faces challenges such as intense heat 
waves, earning it the title of China’s “Four ovens” [31]. The impact of 
global warming is evident in Jinan, as the city experienced 35 
“extremely hot” days (defined as days with the daily maximum tem-
perature reaching or exceeding 35 ◦C) in 2023, setting new records [29].

Guangzhou is the capital of Guangdong Province and is in the Pearl 
River Delta (23◦13′N, 113◦27′E). In 2023, Guangzhou covered an area of 
7434 km2 and was home to 18.83 million residents, boasting a GDP that 
exceeded CNY 3 trillion (USD 4212 billion). The average urban 
disposable income in 2023 was CNY 44,771 (USD 3187.70), showing a 4 
% annual increase [32]. Guangzhou experiences a subtropical monsoon 
climate, with an annual mean temperature of 22 ◦C and precipitation 
exceeding 1800 mm over approximately 150 rainy days [33]. However, 
2023 saw unprecedented extreme heat, shattering records with a 
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maximum temperature of 36.4 ◦C [33].

2.2. Data sources

(1) Land surface temperature (LST) data from the TRIMS LST-TP 
daily 1-km all-weather LST dataset provided by the National Ti-
betan Plateau Data Center (TPDC, https://data.tpdc.ac.cn/en/ 
data/05d6e569–6d4b-43c0–96aa-5584484259f0/), used to 
assess heat exposure [34]. This dataset covers mainland China 
and surrounding areas from 2000 to 2022 and has a temporal 
resolution of 4 observations per day and a spatial resolution of 1 
km.

(2) Landsat Normalized Difference Vegetation Index (NDVI) data 
derived from Google Earth Engine processing of Landsat satellite 
imagery from the National Ecosystem Science Data Center [35], 
used to represent vegetation cover. It has a spatial resolution of 
30 m and a temporal resolution of annual maximum NDVI values.

(3) Population data, including total population density, older popu-
lation ratio, older population density, and highly educated pop-
ulation from the Seventh National Population Census 
Communique [36], used for heat sensitivity assessment.

(4) Facility data of hospital numbers, metro stations, shopping malls, 
and gardens from OpenStreetMap represent urban adaptability 
[37]. Per capita disposable income data from the Jinan Statistical 
Yearbook [30] and Guangzhou Statistical Yearbook [38] measure 
economic adaptability. POI and PCDI data are used for heat 
adaptation assessment.

The MODIS LST and NDVI files from July to September in China were 
imported into ArcGIS Pro 2022 to create average temperature and 
vegetation index rasters. The summer solstice period was chosen to 
capture peak summertime heat exposure by calculating the mean LST 
and NDVI, which account for variability across the summer months. 
Spatial and temporal aggregation was performed using the Cell Statistics 
tool in ArcGIS Pro. Additionally, raw population and POI data 

underwent quality control, including outlier removal, coordinate system 
standardisation to WGS 1984, clipping to the study area, and projection 
to an appropriate analysis coordinate reference system. Population, 
PCDI, and POI datasets were aggregated and summarised by community 
boundaries to align with the 331 spatial analysis units. Finally, using the 
preprocessed LST, NDVI, population, and POI data layers, a vulnera-
bility assessment index system was constructed with indicators assigned 
to each community polygon.

Table 1 summarises the data sources used to assess heat exposure, 
sensitivity, and adaptation in our study.

3. Methodology

This study employs the “Exposure-Sensitivity-Adaptation” frame-
work outlined in the Intergovernmental Panel on Climate Change (IPCC) 
Sixth Assessment Report [39] (refer to Fig. 2). The heat vulnerability 
index is calculated using a composite index approach and is visually 
represented through overlay mapping to illustrate variations across 
different areas. As climate change intensifies, urban heat challenges are 
increasingly significant, posing severe threats to human health and so-
cioeconomic development. Hence, a thorough understanding of the 
spatial distribution of heat vulnerability and its influencing factors is 
crucial for devising effective adaptation strategies and enhancing urban 
climate resilience. The entropy weight method determines the weights 
of various factors within the dimensions of exposure, sensitivity, and 
adaptability.

3.1. Data standardisation

To ensure consistency among different indicators and improve the 
accuracy of the results, the data for all indicators were standardised. 
Each indicator was categorised as positive or negative based on its 
relationship with vulnerability. In this study, the min-max normalisation 
method was applied to standardise all indicators within the range of 0 to 
1, as expressed in (Eq. (1)):

Fig. 1. Study areas.
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Positive indicators: 

Nij =
xij − min

(
xij
)

max
(
xij
)
− min

(
xij
) (1) 

Negative indicators: 

Nij =
min

(
xij
)
− xij

max
(
xij
)
− min

(
xij
) (2) 

Where, Nij is the dimensionless number after standardisation; xij is 
the original data value of each indicator; man

(
xij) and min

(
xij) are the 

maximum and minimum values of the j− th indicator respectively. These 
values are used in the min-max normalisation process to rescale the 
original data from 0 to 1.

3.2. Determination of the weight of evaluation indicators

The weights indicate how much each indicator in the criterion layer 
influences the target layer. Each indicator must be weighed to assess 
heat vulnerability levels based on different factors. This study used the 
hierarchical analysis method (AHP) and the entropy weight method 
(EWM) to calculate the subjective and objective weights of 11 heat 
vulnerability indicators, which helps overcome the limitations of using 
either purely subjective or objective methods alone [40].

3.2.1. AHP method to determine subjective weights of indexes
The Analytic Hierarchy Process (AHP) incorporated experts’ sub-

jective input to score the indicators’ importance [41]. This method in-
volves a systematic process with four main steps: first, the hierarchical 
structure of indicators is established based on the relationships between 
them; second, a judgment matrix is constructed, where each element 
represents the relative importance of one indicator compared to another; 
third, the consistency of the judgment matrix is assessed to ensure the 
rationality of the evaluations; and finally, the weights of the indicators 
are calculated through normalisation [42]. The formula is expressed as: 

A =
(
aj
)

n×n (3) 

Where aj represents the j-th indicator. 

Pi =

(
∏n

1
aij

)1
n

(4) 

Table 1 
Data sources for heat exposure, sensitivity, and adaptation assessment.

Vulnerability 
aspect

Variable ID Expected 
impact on 
Heat Risk 
Index

Sources

Exposure Land Surface 
Temperature 
(LST)

E- 
01

Positive Zhou et al. [34]

The Normalized 
Difference 
Vegetation Index 
(NDVI)

E- 
02

Negative Dong et al. [35]

Sensitivity Total population 
density

S- 
01

Positive National Bureau of 
Statistics of China [36]

Older population 
density

S- 
02

Positive

Older population 
proportion

S- 
03

Positive

Adaptation Garden A- 
01

Positive OpenStreetMap [37]

Per capita 
disposable 
income

A- 
02

Positive Jinan Municipal 
Bureau of Statistics 
[30] Guangzhou 
Municipal Bureau of 
Statistics [38]

Hospital A- 
03

Positive OpenStreetMap [37]

Shopping mall A- 
04

Positive

Metro station A- 
05

Positive

High-level 
education

A- 
06

Positive National Bureau of 
Statistics of China [36]

Fig. 2. Heat vulnerability assessment framework.
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τi =
pi
∑n

i pi
(5) 

Where pi is the priority vector calculated from the geometric mean, 
and τi represents the final subjective weight of the i th indicator.

3.2.2. Entropy weight method
Compared to AHP, the EWM effectively avoids the subjectivity of 

artificially determining the weight of indicators [43]. The entropy 
weight method determines the weight based on the difference in infor-
mation between the data. If the information entropy of the indicator is 
smaller, it indicates a higher degree of disorder and a larger range of 
change, thus exerting a more significant impact on the evaluation. Excel 
was used to determine the weights for the indicators in Table 2. The final 
scores for each indicator in each community can be found in Section 4
and Appendix A.

The calculation steps of the entropy weight method involve (Eq. (6)) 
calculating information entropy: 

Hj = − k
∑m

i=1
pijlnpij (6) 

Where Hj represents the information entropy value of the i th 
indicator. 

pij = zij

/
∑m

i=1
zij, k = 1

/

lnm (7) 

Where Pij is the proportion of the indicator in the sample and (Eq, 
(8)) calculating the indicator weight: 

wj =
1 − Hj

∑n
i=1
(
1 − Hj

) and wj [0,1], and
∑n

j=1
wj = 1 (8) 

3.2.3. Combination weighting method
The objective entropy weights and subjective AHP weights were 

integrated through the following formulas to generate the 
comprehensive indicator weights: 

λ = (τ+w)/2 (9) 

3.3. Heat exposure assessment

The assessment of exposure is mainly based on two factors: LST and 
NDVI. LST directly indicates the thermal conditions of urban surfaces 
and is crucial for assessing the urban heat island effect [44]. NDVI 
measures the amount of urban greenery, which can effectively reduce 

ambient temperatures by evapotranspiration, thus helping to mitigate 
the heat island effect [45]. The combined considerations of LST and 
NDVI comprehensively characterise urban thermal environments and 
their potential for cooling. The entropy weight method combines these 
indicators into an integrated exposure index. The exposure index is then 
divided into five risk levels using the natural classification method 
(Jenks Natural Breaks method), a commonly used algorithm in GIS ap-
plications [46]. This method effectively partitions a dataset into a pre-
defined number of homogeneous categories by minimising variance 
within groups and maximising variance between groups [47]. Based on 
the heat vulnerability indicator weight (Table 2), the heat exposure for 
each indicator factor is calculated using (Eq. (10)): 

HEA =
∑n

i=1
(wei × hei) (10) 

Where HEA is the heat exposure index; wei is the weight of the i th 
indicator of heat exposure; hei is the standardised value of a single in-
dicator, and n represents the number of indicators.

3.4. Heat sensitivity assessment

The sensitivity assessment focuses on inherent population charac-
teristics, especially the proportion of older residents. Older individuals 
are particularly concerned due to their diminished physiological regu-
lation and reduced heat tolerance, which render them more vulnerable 
during heat waves [48]. Research indicates a notably higher mortality 
rate among older individuals during heat waves [49]. Heat sensitivity 
indicators include total population density, proportion of the population 
aged 60 years and above, and population density. The higher the heat 
sensitivity, the higher the heat vulnerability. Based on the heat vulner-
ability indicator weight (Table 2), the heat sensitivity for each indicator 
factor is calculated using (Eq. (11)): 

HSA =
∑n

i=1
(wei × hei) (11) 

Where HSA is the heat sensitivity index; ωei is the weight of the i th 
indicator of heat sensitivity; hei is the standardised value of a single in-
dicator, and n represents the number of indicators.

3.5. Heat adaptability assessment

Urban structures that aid in mitigating and safeguarding against heat 
waves are considered when evaluating adaptability. Key indicators 
include the presence and number of gardens, hospitals, metro stations, 
and socioeconomic factors such as education level and income. Urban 
parks serve as cooling and refuge areas, providing essential green spaces 
[50]. The quantity of hospitals signifies the availability of healthcare 
services during heat waves [51]. Metro stations and shopping malls 
serve as vital cooling shelters, especially for lower-income residents 
without air conditioning [52]. The education level reflects residents’ 
awareness and access to heatwave information, contributing to better 
preparedness [53]. PCDI represents the capacity to procure and use 
cooling devices like air conditioners [54]. The stronger the adaptability 
to heat, the lower the heat vulnerability. Based on the heat adaptability 
indicator weight (Table 2), the heat adaptability for each indicator 
factor is calculated using (Eq. (12)): 

HAA =
∑n

i=1
(wei × hei) (12) 

Where HAA is the heat adaptability index; weiis the weight of the i th 
indicator of heat adaptability; hei is the standardised value of a single 
indicator, and n represents the number of indicators.

Table 2 
Weights of heat exposures, sensitivities, and adaptation indicators in Jinan and 
Guangzhou.

Factors Indicators Comprehensive 
weight (Jinan)

Comprehensive weight 
(Guangzhou)

Exposure LST 0.520 0.516
 NDVI 0.480 0.484
Sensitivity   
 Total population 

density
0.303 0.241

 Old population 
density

0.472 0.502

 Old population 
proportion

0.225 0.257

Adaptation   
 Shopping mall 0.104 0.119
 Garden 0.298 0.339
 Metro 0.251 0.141
 Hospital 0.101 0.141
 High education 

level
0.097 0.109

 PCDI 0.149 0.151
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3.6. Heat vulnerability assessment

This study adapts the Climate Change Vulnerability Index (CCVI) 
model modified to construct a heat vulnerability assessment framework. 
The framework includes an equation that quantifies heat vulnerability, 
using exposure and sensitivity as positive indicators and adaptive ca-
pacity as a negative indicator [55].

Fig. 2 illustrates a framework for assessing heat vulnerability based 
on exposure, sensitivity, and adaptation. This model combines key in-
dicators to evaluate heat vulnerability within urban populations, 
developed by Cissé et al. [39] in the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change. This model combines key 
indicators to evaluate heat vulnerability within urban populations. 
Exposure is represented by environmental factors, specifically Land 
Surface Temperature (LST) and Normalized Difference Vegetation Index 
(NDVI). These indicators measure the extent to which a population is 
exposed to heat, where higher LST and lower NDVI values typically 
indicate greater heat exposure. Sensitivity captures the demographic 
factors influencing vulnerability, such as total population density, older 
population density, and older population proportion. These factors 
affect how intensely a population might feel the impact of heat, with 
denser and older populations being more sensitive. Adaptation en-
compasses social and infrastructural factors that may mitigate heat ef-
fects, including proximity to gardens, metro access, hospitals, shopping 
malls, and indicators of socioeconomic resilience, like high education 
levels and per capita disposable income. These adaptation resources can 
help reduce vulnerability by providing cooling spaces, healthcare, and 
financial means to cope with heat. The formula is: 

HVA = EA + HSA − HAA (13) 

Where HVA represents the heat vulnerability index, a higher value 
indicates a more severe impact of heat disasters, while a lower value 
suggests a weaker impact; HEA is the heat exposure index; HSA is the 
heat sensitivity index; HAA refers to the heat adaptability index. The 
HVA is calculated using Eq. (6), and the natural breaks classification 
method in ArcGIS Pro is then used to classify heat vulnerability into five 
levels: high vulnerability risk, relatively high vulnerability risk, medium 
vulnerability risk, relatively low vulnerability risk, and low vulnera-
bility risk.

3.7. GeoDetector

The GeoDetector method was developed based on two fundamental 
geographic laws and spatial statistical techniques. It effectively assesses 
the impact of various influencing factors on the distribution of 
geographical phenomena [56–58]. This method uses the heat vulnera-
bility index as the dependent variable. It employs factor and interaction 
detectors to analyse the driving factors of heat vulnerability, exploring 
the driving force of each factor on heat vulnerability. This model has 
been widely applied in earth sciences, social sciences, and public health 
research [59].

3.7.1. Factor detector
The factor detector investigates the influence of individual factors on 

heat vulnerability [60] and quantifies the extent to which each factor 
explains the spatial variation in heat vulnerability.

The formula for GeoDetector factor detection is as follows: 

q = 1 −

∑L
h=1Nhσ2

h
Nσ2 = 1 −

SSW
SST

(14) 

SSW =
∑L

h=1
Nhσ2

h , SST = Nσ2 (15) 

Where h represents the layer number of the independent variable, and 
Nh is the number of sample units in each zone; N is the total number of 

samples in the entire study area; L is the total number of zones (or 
categories) of the independent variables; and σ2

h is the variance within 
each zone, and σ2 is the global variance in the entire study area. SSW is 
the variances within the zone; SST is the global variance of the depen-
dent variables in the study area. A factor detector can detect whether 
each potential impact factor is the impact factor of heat vulnerability, 
with its explanatory power measured by the q-value, ranging from [0,1], 
where a more significant value indicates stronger explanatory power.

3.7.2. Interaction detector
The interaction detector examines the combined effects of pairs of 

factors on heat vulnerability [61] and determines whether the interac-
tion between two factors enhances or weakens their individual effects on 
heat vulnerability. The interaction detector evaluates the strength and 
type of interaction between two factors by calculating their combined 
q-value (q(X1∩X2)) and comparing it with the individual q-values (q 
(X1) and q(X2)). Table 3 shows the classification of these interactions. 
The ID categorizes these interactions into several types: weakening 
(nonlinear or univariate), enhancing (either bivariate or nonlinear), or 
independent, based on the relative values of q(X1), q(X2), and q 
(X1∩X2). In this study, the ID is applied to assess whether the interaction 
of key driving factors, such as NDVI, population density, or 
socio-economic variables, intensifies or reduces their collective impact 
on heat vulnerability.

4. Results

4.1. Exposure assessment

The city of Guangzhou has been divided into five levels of heat 
exposure risk: extremely high risk (0.723–1.000), high risk 
(0.605–0.722), moderate risk (0.511–0.604), low risk (0.389–0.510), 
and extremely low risk (0.001–0.388) (See Fig. 3 above). Areas with 
higher heat exposure are spread across multiple centres and decrease in 
intensity from the central to peripheral regions. This phenomenon is 
primarily attributed to the higher reflection, absorption, and retention 
of heat in built-up centres, coupled with lower vegetation coverage and 
weaker heat dissipation capacity, thereby contributing to the heat island 
effect. High-exposure areas are concentrated in Yuexiu, Liwan, Baiyun, 
Huadu, Tianhe, and Haizhu and are closely associated with lower 
greenery in these districts. Panyu exhibits moderate exposure, while 
southern Conghua experiences lower exposure. Northern Guangzhou 
registers significantly lower exposure than the south, likely due to 
higher vegetation coverage on the outer edges, which reduces heat ra-
diation. Additionally, the Pearl River system may contribute to local 
cooling effects.

Jinan’s heat exposure risk is classified into five levels: extremely high 
(0.777–1.000), high (0.683–0.776), moderate (0.589–0.682), low 
(0.464–0.588), and extremely low (0.001- 0.463) (See Fig. 3 below). The 
distribution demonstrates a “high centre, low periphery” pattern. The 
central urban districts of Tianqiao, Huaiyin, Licheng, and central Lixia 
face high exposure risks due to concentrated buildings, population, and 
lower greenery. Laiwu also exhibits high exposure, potentially due to 
industrial activities, as it serves a significant steel industry base, and 
emissions from large steel enterprises may contribute to localised heat 
gains. In contrast, Changqing and southern Lixia have lower exposure 

Table 3 
Types of interaction relationships between the two factors.

Criterion Interaction

q (X1
⋂

X2) < Min (q (X1), q (X2) Weaken; nonlinear
Min (q (X1), q (X2)) < Max (q (X1), q (X2)) Weaken; nonlinear; univariate
q (X1

⋂
X2) > Min (q (X1), q (X2) Enhance; bivariate

q (X1
⋂

X2) = q (X1) +q (X2) Independent
q (X1

⋂
X2) > q (X1) + q (X2) Enhance; nonlinear
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risks due to their proximity to forests, highlighting the critical role of 
vegetation in cooling. Central Shanghe County exhibits moderately high 
exposure, likely because its northern location in Jinan shields it from 
cooling southerly winds. The southern mountainous areas of Jinan 
generally have lower exposure, attributed to their higher elevation and 

abundant vegetation cover. The spatial pattern of heat exposure in Jinan 
reflects the combined effects of urbanisation, terrain, and vegetation 
while demonstrating the moderating influence of natural geography on 
thermal environments.

Fig. 3. Spatial distribution of the heat exposure indicators in Guangzhou and Jinan.

Fig. 4. Spatial distribution of the heat sensitivity indicators in Guangzhou and Jinan.
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4.2. Sensitivity assessment

The sensitivity index is determined by calculating a weighted 
average of three indicators: the proportion of older population, total 
population density, and older population density. The results of the heat 
sensitivity assessment are presented in Fig. 4. Sensitivity is classified 
into five levels using the Jenks natural breaks classification method.

In Guangzhou, sensitivity classes are classified as extremely high risk 
(0.546–1.000), high risk (0.330–0.545), moderate risk (0.197–0.329), 
low risk (0.111–0.196), and extremely low risk (0.001–0.110). Areas 
with high and moderately high risk are primarily located in Yuexiu and 
Tianhe districts, which are traditional city centres with dense pop-
ulations, vibrant economic activity, and potentially a higher proportion 
of older residents. Conversely, areas with lower sensitivity are mainly 
located in Panyu, Huadu, Zengcheng, Huangpu, and Nansha districts, 
with relatively lower population densities and proportions of older 
residents.

In Jinan, sensitivity classes are categorised as extremely high risk 
(0.625–1.000), high risk (0.366–0.624), moderate risk (0.162–0.365), 
low risk (0.052–0.161), and extremely low risk (0.001–0.051). The 
Licheng and Shizhong districts are identified as high-sensitivity areas 
due to their status as traditional urban cores with dense and ageing 
populations. The northern Zhangqiu area exhibits moderate sensitivity, 
which could be linked to its demographic composition.

In both cities, urban centres typically show higher sensitivity due to 
higher total population densities and the proportions and densities of 
older residents. The sensitivity index shows a concentric pattern of 
decreasing risk from urban cores to peripheral areas, closely associated 
with population distribution characteristics.

4.3. Adaptation assessment

Assessing adaptive capacity involves using an adaptability index, 
calculated as the weighted average of six indicators: the proportion of 
the population with a high level of education, the number of hospitals, 
metro stations, shopping malls, gardens, and per capita disposable in-
come. Subsequently, the adaptability index is classified into five risk 
levels using the Jenks natural breaks classification method.

In Guangzhou, the risk level is divided into five categories: extremely 
high risk (0.730–1.000), high risk (0.41–0.729), moderate risk 
(0.323–0.490), low risk (0.170–0.322), and extremely low risk 
(0.001–0.169) (Refer to Fig. 5). The adaptive capacity in Guangzhou 
exhibits a distinct “strong south, weak north” pattern, declining from the 
southern/central areas towards the north and west. Central districts, 
such as Tianhe, Yuexiu, and Haizhu, exhibit the strongest adaptability, 
boosted by higher education institutions, well-established medical fa-
cilities, extensive metro networks, numerous shopping malls, ample 
parks, and higher average disposable incomes. In contrast, the northern 
and northwestern regions, like Conghua, Huadu, and northern Baiyun, 
display weaker adaptive capacity, primarily due to their distance from 
the urban core and relatively lower levels of education, healthcare, 
public transport, commercial facilities, and potentially lower average 
incomes. This distribution reflects an unequal allocation of resources 
and development in Guangzhou.

In Jinan, the risk level is also divided into five classes: extremely high 
risk (0.621- 1.000), high risk (0.448–0.620), moderate risk 
(0.295–0.447), low risk (0.142–0.294), and extremely low risk 
(0.001–0.141) (See Fig. 6). The adaptability in Jinan follows a concen-
tric pattern, originating from the city centre and diminishing towards 
the periphery, especially in the northeast and southwest. The central 
districts of Shizhong, Licheng, and central Huaiyin demonstrate the 

Fig. 5. Spatial distribution of adaptation ability in Guangzhou.
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highest resilience, supported by a strong presence of higher education 
institutions, concentrated hospital facilities, an improving metro system, 
major commercial centres, ample parks, and higher average disposable 
incomes. Conversely, peripheral areas, such as Changqing, Zhangqiu, 
and Jiyang, exhibit weaker adaptive capacity due to their distance from 
downtown and relative lack of higher education, healthcare, infra-
structure, and public services. This pattern underscores the develop-
mental gap between Jinan’s urban core and peripheral regions.

4.4. Vulnerability assessment

The heat vulnerability risk index was calculated based on exposure, 
sensitivity, vulnerability factors, and their respective weights. Subse-
quently, it was categorised into five levels using the Jenks natural breaks 
classification method. The spatial distribution of the heat vulnerability 
risk levels in Jinan and Guangzhou was then obtained (refer to Fig. 7).

In Guangzhou, South China’s economic, cultural, and transportation 
hub, there are notable geographic differences in urban vulnerability. 
Core districts, like Haizhu and Liwan, have lower vulnerability due to 
their robust infrastructure, abundant medical resources, developed 
public transit systems, and extensive green space coverage. Residents in 
these areas also enjoy higher incomes and robust social services, which 
enhance their adaptive capacity to external shocks. However, some 
older neighbourhoods in central districts, like Yuexiu and Tianhe, face 
higher vulnerabilities due to dense construction, ageing populations, 
and complex legacy issues. Peripheral districts, like Conghua and Zen-
gcheng, exhibit higher vulnerabilities due to relatively slower urbani-
sation, unequal distribution of public resources, inadequate public 
transit networks, and lower economic development. Disasters, economic 
fluctuations, and other external disturbances may impact these areas. 
Additionally, rapidly developing districts, like Panyu and Nansha, 
display medium vulnerability, reflecting rapid population growth and 
imbalances in infrastructure development. Prioritising sustainable 
development, optimised resource allocation, and environmental pro-
tection could mitigate future risks in these emerging districts.

In Guangzhou, South China’s economic, cultural, and transportation 
hub, there are notable geographic differences in urban vulnerability. 
Core districts, like Haizhu and Liwan, have lower vulnerability due to 
their robust infrastructure, abundant medical resources, developed 
public transit systems, and extensive green space coverage. Residents in 
these areas also enjoy higher incomes and robust social services, which 
enhance their adaptive capacity to external shocks. However, some 
older neighbourhoods in central districts, like Yuexiu and Tianhe, face 
higher vulnerabilities due to dense construction, ageing populations, 
and complex legacy issues. Peripheral districts, like Conghua and Zen-
gcheng, exhibit higher vulnerabilities due to relatively slower urbani-
sation, unequal distribution of public resources, inadequate public 
transit networks, and lower economic development. Disasters, economic 
fluctuations, and other external disturbances may impact these areas. 
Additionally, rapidly developing districts, like Panyu and Nansha, 
display medium vulnerability, reflecting rapid population growth and 
imbalances in infrastructure development. Prioritising sustainable 
development, optimised resource allocation, and environmental pro-
tection could mitigate future risks in these emerging districts.

In Jinan, the provincial capital of Shandong, there are variations in 
urban vulnerability across different districts. Core districts, such as 
Licheng, Shizhong, Tianqiao, and central Changqing, have lower 
vulnerability due to their higher economic development, ample medical 
and educational resources, well-established public transit, and modern 
infrastructure, making them more resilient against various risks. How-
ever, peripheral regions, like Shanghe County, northern Zhangqiu, and 
Pingyin County, have higher vulnerabilities due to relatively weaker 
economies, inadequate healthcare, poor transportation, ageing pop-
ulations, and limited educational resources, making them more sus-
ceptible to external shocks, such as economic fluctuations or disasters. 
Additionally, some Huaiyin and Lixia districts face medium vulnera-
bility due to the slow redevelopment of old communities and high 
population density during urbanisation. It is crucial to prioritise 
improving living conditions and enhancing resilience in these 
communities.

Fig. 6. Spatial distribution of adaptation ability in Jinan.
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The study identifies vulnerability risks at a finer community scale by 
examining the spatial distribution of heat vulnerability risk. The 
Ridgeline Plot indicates the presence of multiple high-risk communities 
with vulnerability values exceeding 90 % in both cities. In Guangzhou, 
areas such as Beijing, Binjiang, Changang, Chongqing, Datang, Guangta, 
Haichuang, Huadi, and Hualin are identified as high-risk communities 
(see Fig. 8). Similarly, in Jinan, communities including Guanzhaying, 
Hongjialou, Huairen, Huanghe, and Qilishan are also found to face 

severe heat risks, characterised by high exposure and sensitivity (see 
Fig. 9).

4.5. Factors driving heat vulnerability

The results of the GeoDetector analysis reveal the main factors 
influencing heat vulnerability. In Jinan, the proportion of the older 
population has the strongest explanatory power, with a q-statistic value 

Fig. 7. Distribution of the heat vulnerability risks in Guangzhou (left) and Jinan (right).

Fig. 8. High and Very High Vulnerability Levels (Above 90 %) in Guangzhou’s Communities.
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of 0.2899, indicating its crucial role in heat vulnerability (Table 4). 
Older individuals are more susceptible to heat waves due to their 
physiological characteristics, which make them less adaptable and 
resistant to extreme heat.

In Guangzhou, higher education emerges as the most significant 
factor, with a q statistic of 0.3257, suggesting that educational level is 
pivotal in mitigating heat vulnerability (Table 4). Highly educated 
populations may have better access and understanding of heat protec-
tion measures, enabling them to cope more effectively with high- 
temperature events. This finding underscores the significance of edu-
cation in enhancing community resilience to heat-related risks.

In Jinan, the higher proportion of the older population emerges as a 
significant contributing factor to heat vulnerability, supported by a 
notable impact (q-statistic of 0.2961). The older population may face 
elevated health risks during high temperatures. The total population 
density (q-statistic of 0.2440) follows closely, which may exacerbate the 
urban heat island effect, thereby increasing heat vulnerability.

Additionally, NDVI demonstrates a substantial influence (q-statistic 
of 0.2440), reflecting the positive role of urban greenery in mitigating 
heat vulnerability. In contrast, the presence and distribution of metro 
stations have the most negligible impact on heat vulnerability (q-sta-
tistic of 0.0023), suggesting that while Jinan’s metro system offers 

convenient transportation for residents, its direct contribution to miti-
gating environmental heat stress may be limited.

In Guangzhou, the level of education among the population has the 
most significant impact on heat vulnerability (q-statistic of 0.3257), 
potentially indicating an association between education level and the 
ability of urban residents to cope with heat-related disasters. Following 
this, the proportion of the older population (q-statistic of 0.2630) and 
PCDI (q-statistic of 0.2448) suggest that the older demographic and 
economic conditions are also crucial factors influencing heat vulnera-
bility in Guangzhou. Like Jinan, the impact of subway stations on 
Guangzhou’s heat vulnerability is relatively small (q-statistic of 0.0232), 
further corroborating the indirect nature of subway systems in reducing 
heat vulnerability. While individual factors have distinct impacts on the 
environment, the interaction of multiple factors provides a more intui-
tive exploration of the driving forces behind heat vulnerability in both 
regions.

4.5.1. Interaction detector analysis
Multi-Factor Drivers of Heat Vulnerability in Guangzhou
Guangzhou’s interaction analysis reveals strong connections be-

tween education levels and other factors, particularly green spaces (q =
0.522), PCDI (q = 0.352), and older population densities (q = 0.481) 
(see Fig. 10). Areas with higher education levels in Guangzhou often 
coincide with better infrastructure, potentially reducing heat vulnera-
bility. However, the strong interaction with older population density 
suggests that even well-resourced areas face challenges from de-
mographic ageing.

PCDI demonstrates significant interaction effects with different fac-
tors, especially green space (q = 0.508) and the proportion of the older 
population (q = 0.476). These findings suggest that economic conditions 
play a crucial role in shaping the distribution of urban greenery and the 
resilience of older residents. Wealthier areas tend to have more green 
space, which can help mitigate the heat island effect.

Another notable finding is the interaction between hospital resources 
and green space (q = 0.505). This suggests that integrating healthcare 
facilities with green areas is crucial in Guangzhou’s urban planning to 

Fig. 9. High and Very High Vulnerability Levels (Above 90 %) in Jinan’s Communities.

Table 4 
The q statistic of the factor detector (p = 0) in Jinan and Guangzhou.

Indicator q statistic (Jinan) q statistic (Guangzhou)

LST 0.1772 0.1490
NDVI 0.2440 0.1644
Total population density 0.2961 0.0899
Older population density 0.2099 0.0890
Older population proportion 0.2899 0.2630
Garden 0.0128 0.2545
Metro 0.0023 0.0232
PCDI 0.0819 0.2448
Hospital 0.0840 0.1127
Shopping mall 0.0202 0.1402
High-level education 0.0570 0.3257

J. Chen et al.                                                                                                                                                                                                                                     Building and Environment 271 (2025) 112622 

11 



mitigate heat vulnerability. Access to healthcare and urban green spaces 
can help residents cope with extreme heat, so their combined presence is 
particularly beneficial in reducing vulnerability.

The interactions between LST and socio-economic factors such as 
PCDI (q = 0.443) and education levels (q = 0.453) emphasise the 
complex relationships between urban heat and social development. 
Conversely, the metro systems exhibit relatively weak interactions with 
other factors, likely due to the extensive and well-established metro 
network in Guangzhou, which minimises variations in its impact on heat 
vulnerability across different regions. The NDVI shows moderately 
strong interactions with various factors, reflecting Guangzhou’s identity 
as a “Flower City,” where urban greening is intricately linked with 
broader aspects of city development [62].

Guangzhou, as the core engine of the Guangdong-Hong Kong-Macao 
Greater Bay Area, has undergone rapid urbanisation and economic 
expansion. Its GDP reached CNY3.04 trillion (USD 4.267 trillion) in 
2023, with a permanent population of 10.5661 million [32]. Despite 
achieving a green coverage rate of 43.6 %, the city still grapples with 
persistent challenges from the urban heat island effect, with 2023 
marking a record number of extreme heat days [33]. This underscores 
the ongoing need for continued investment in green space and strategic 
planning to address the ageing population and socio-economic 
disparities.

Multi-Factor Drivers of Heat Vulnerability in Jinan
The interaction detector analysis for Jinan reveals significant syn-

ergistic interactions among population density, older population pro-
portion, and PCDI in contributing to heat susceptibility (See Fig. 11). 
The interaction between the older population proportion and PCDI is 
particularly strong (q = 0.653), indicating that the combination of 
economic status and demographic ageing substantially influences heat 
vulnerability.

Environmental factors like NDVI and LST also interact significantly 
with population-related factors, highlighting the close relationship be-
tween urban greening, heat island effects, and population distribution. 
While infrastructure factors like metro stations have a relatively small 
standalone impact, their interaction with population density signifi-
cantly amplifies their influence on heat vulnerability. This suggests that 
public transportation may be critical in reducing heat risks in densely 
populated areas.

The relationship between hospital resources and the density of the 
older population is particularly significant (q = 0.426), emphasising the 
crucial role of healthcare facility distribution in addressing heat 
vulnerability, especially within ageing communities. Although educa-
tion level and shopping centres have limited standalone effects, their 
influence patterns become more intricate when interacting with eco-
nomic and population factors.

The findings are closely linked to Jinan’s rapid urbanisation and 
demographic changes over recent decades. Jinan’s population surged 
from 1.8 million in 2000 to 9.437 million in 2023, with the proportion of 
residents aged 60 and above rising from 8.14 % to 23.62 % [29]. This 
demographic shift and economic development have heightened the 
city’s vulnerability to extreme heat, particularly in areas with concen-
trated older and economically disadvantaged populations. Recognising 
these challenges, Jinan has increased its green coverage from 37.04 % in 
2010 to 47.2 % in 2023 [29]. This aligns with our findings on NDVI’s 
significant role in mitigating heat vulnerability and addressing the 
environmental pressures caused by rapid urban expansion.

Fig. 10. Effect of two-factor interaction on vulnerability to heat in Guangzhou.
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5. Discussion

5.1. Key factors affecting heat vulnerability

This study employed the GeoDetector model to evaluate heat 
vulnerability risk among older populations in Guangzhou and Jinan 
based on the exposure-sensitivity-vulnerability-adaptation framework. 
The results revealed significant geographical differences in the factors 
influencing heat vulnerability between these two cities. In Guangzhou, 
education level emerged as the most influential factor, while in Jinan, 
the proportion of the older population had the most significant impact. 
These findings highlight the complex interplay of various elements in 
shaping urban heat vulnerability.

Education emerged as the most influential factor in Guangzhou, 
consistent with previous studies linking higher educational attainment 
to improved risk perception and adaptive capacity [63,64]. Individuals 
with higher education are better equipped to access information, un-
derstand risks, and engage in adaptive behaviours. However, this 
finding also highlights the risk of exacerbating social disparities due to 
unequal access to education [65–67]. To address this, future research 
should explore community-based programs and public awareness cam-
paigns targeting less-educated populations to enhance their heat adap-
tation capabilities.

Environmental factors, particularly the Normalized Difference 
Vegetation Index (NDVI), played a significant role in both cities. In 
Guangzhou, NDVI interacted strongly with per capita disposable income 
(PCDI) and the proportion of older populations, underscoring the 
importance of urban greening in mitigating the urban heat island effect 
[68,69]. However, the unequal distribution of green infrastructure, as 
highlighted by the concept of “green gentrification” [70], can exacer-
bate social inequalities. Therefore, the equitable distribution of green 
spaces in lower-income areas should be a priority in urban planning to 

ensure that all residents benefit from greening initiatives.
The interaction between medical facilities and green spaces in 

Guangzhou underscores the need to integrate public health consider-
ations into environmental planning. Previous studies have shown that 
access to medical resources can reduce heat vulnerability during heat 
waves [71]. However, the concentration of hospital resources in affluent 
green areas risks deepening health inequalities [72]. Policies should aim 
to decentralize healthcare infrastructure and improve access in vulner-
able communities.

In Jinan, the older population emerged as the most influential factor, 
aligning with global research on the heightened vulnerability of older 
adults to extreme heat [73,74]. Older adults face physiological and so-
cial challenges that increase their risk, emphasising the need for "age--
friendly city" concepts [75]. Findings also revealed interactions between 
income levels and older populations, highlighting the compound impact 
of socioeconomic inequalities on heat vulnerability [76]. Targeted in-
terventions, such as financial support and community-based cooling 
initiatives for low-income older residents, are essential to address these 
challenges.

Building on this socioeconomic dimension of heat vulnerability, 
Lanza et al. [77] highlighted that low-income older adults often reside in 
areas disproportionately affected by extreme heat and lack the necessary 
resources to cope. This aligns with our findings and emphasises the need 
for targeted interventions in areas with high concentrations of 
low-income older residents. Owen [78] further emphasised the impor-
tance of comprehensively considering socioeconomic factors, de-
mographic characteristics, and environmental conditions in effective 
climate adaptation strategies. The significant differences between 
Guangzhou and Jinan underscore the need for tailored and 
location-specific adaptation strategies for local demographic and so-
cioeconomic conditions. To effectively address the challenges posed by 
extreme heat, it is necessary to simultaneously address the distribution 

Fig. 11. Effect of two-factor interaction on vulnerability to heat in Jinan.
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of educational resources, green space planning, support for the welfare 
of older populations, and economic inequalities.

5.2. Community characteristics and heat vulnerability risk

The spatial disparities of heat vulnerability identified in this study 
exhibit both consistencies and differences with previous research. 
Studies highlighted that urban areas with higher heat vulnerability are 
often concentrated in older neighbourhoods and economically disad-
vantaged communities [79–81]. This aligns with the distribution of 
extreme heat vulnerability observed in Guangzhou, where high-risk 
communities such as Beijing, Binjiang, Changgang, Chongqing, 
Datang, Guangta, Haichuang, Huadi, and Hualin are typically located in 
the city centre or underdeveloped peripheral areas. Notably, the study 
found that Guangzhou’s high heat vulnerability is not only clustered in 
the older districts of the urban centre but also extends to some periph-
eral regions that are underdeveloped and lack adequate infrastructure. 
Similarly, in Jinan, areas with high vulnerability—such as Guanzhaying, 
Hongjialou, Huairen, Huanghe, and Qilishan—are primarily situated in 
socioeconomically disadvantaged peripheral counties with insufficient 
services. This pattern is consistent with previous research, which iden-
tified clusters of heat vulnerability in urban centres and suburban edges 
[82,83]. Therefore, more attention must be paid to this community type 
during heat waves.

The Associations between community characteristics and heat 
vulnerability risk suggest that our findings are broadly applicable. They 
extend beyond the heat-prone areas examined in this study to other 
cities affected by heat waves, particularly those with similar develop-
ment levels and geographic conditions. Further research could validate 
and extend these results across diverse cities and regions, particularly in 
urban areas grappling with rapid growth, ageing populations, and rising 
temperatures.

5.3. Applicability of heat vulnerability assessment model

Urban areas’ vulnerability to heat is shaped by environmental, socio- 
economic, and cultural factors [61]. Although progress has been made in 
developing heat vulnerability assessment models, urban heat dynamics 
are often oversimplified. This oversimplification reflects a fundamental 
misunderstanding of urban heat vulnerability rather than a methodo-
logical shortcoming.

Current models generally fall into two categories, each with limita-
tions. Environmental-focused models (e.g., Yin et al. [84]; Kershaw and 
Millward [85]) effectively identify physical hazards but often disregard 
social vulnerability factors, assuming uniform human responses to heat 
stress. Conversely, socially focused models (e.g., Barron et al. [86]) 
address demographic and socio-economic disparities but overlook 
physical aspects such as urban heat island effects or access to green 
infrastructure. This methodological divide limits the utility of these 
models in urban planning and public health strategies, highlighting the 
need for an integrated, systems-thinking approach.

Our study emphasizes the importance of a holistic framework that 
integrates environmental, social, economic and infrastructural factors. 
For example, our inclusion of NDVI as an exposure indicator represents a 
step forward compared to prior studies relying solely on temperature 
metrics like LST [87]. Additionally, adaptation indicators such as metro 
systems, hospitals, and shopping centres provide a fresh perspective on 
urban heat resilience. However, further validation is required to assess 
these indicators’ broader applicability and effectiveness.

A critical challenge in heat vulnerability assessment lies in the 
inconsistent classification of indicators. For instance, while this study 
categorizes the older population as part of sensitivity, other research (e. 
g., [88,89]) classifies it as an exposure indicator. Similarly, we use PCDI 
instead of GDP as an economic indicator to reflect a more nuanced un-
derstanding of individual adaptive capacity, contrasting with studies 
like Lim et al. [90] that categorise GDP as a sensitivity metric. These 

discrepancies underscore the urgent need for standardisation in select-
ing and classifying indicators to ensure comparability across studies and 
to strengthen policy relevance.

Moving forward, developing more comprehensive models inte-
grating environmental, social, and infrastructural factors while working 
towards a more standardised approach to indicator selection and clas-
sification is necessary. Through such holistic and standardised assess-
ment, we can fully understand and effectively address the complex 
challenges of urban heat vulnerability in rapidly urbanising cities.

5.4. How to reduce the heat vulnerability of older people to improve 
community climate resilience?

While the ageing population mainly affects Jinan’s heat vulnera-
bility, Guangzhou is exacerbated by socio-economic disparities and 
rapid urbanisation in its peripheral regions. We propose the following 
community heat vulnerability adaptation strategies based on the dis-
tribution of heat vulnerability.

For Guangzhou: 

1) Improving the urban built environment by adopting green infra-
structure and reflective materials is essential for reducing heat 
exposure in Guangzhou. Specific initiatives can include installing 
vertical gardens on building facades, creating rooftop greenery, and 
increasing street-level vegetation such as shaded walkways and tree- 
lined streets.

2) The retrofitting of ageing residential buildings must be prioritised to 
address the risks of extreme heat, particularly for vulnerable groups 
like older adults and low-income residents. Key upgrades include 
applying reflective coatings or materials to building exteriors to 
reduce heat absorption and improve indoor thermal conditions.

3) Increasing green space coverage is essential for improving urban 
microclimates and reducing neighbourhood-level heat exposure. 
Converting underutilised urban spaces or vacant lots into pocket 
parks, for instance, can expand green coverage even in densely built- 
up neighbourhoods.

4) Public awareness campaigns can disseminate information about 
heat-related health risks and help residents recognise warning signs 
of heat exhaustion or heatstroke. Outreach initiatives could include 
distributing brochures, holding workshops, and leveraging digital 
platforms such as apps or social media to share real-time heat alerts 
and safety tips. For example, creating a city-wide “Heatwave Week” 
with interactive activities and expert seminars could engage resi-
dents and encourage proactive heat risk management.

For Jinan: 

1) Community centres can be repurposed as dedicated cooling hubs 
during heatwaves, providing safe, air-conditioned spaces for 
vulnerable populations, particularly older adults. These hubs can 
have cooling equipment such as fans, air purifiers, and hydration 
stations to ensure a comfortable indoor environment. Beyond serving 
as a refuge from extreme heat, these centres can host health educa-
tion workshops, wellness check-ups, and social events that promote 
awareness of heat-related risks and foster a sense of community.

2) Providing health monitoring devices tailored to older adults can 
enable real-time tracking of vital signs such as body temperature, 
heart rate, and hydration levels during heatwaves. These devices, 
such as wearable smartwatches or sensor-based trackers, could 
automatically alert caregivers or healthcare professionals when 
abnormal readings are detected, ensuring timely medical interven-
tion. For example, if an older person’s body temperature reaches a 
critical threshold, the system could immediately notify emergency 
services or family members. Integrating these devices into the com-
munity healthcare system would allow local clinics or health centres 
to maintain a centralised database for proactive monitoring.
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3) Strengthening community healthcare services is essential to address 
heat-related health risks effectively. Increasing the number of 
healthcare workers, particularly during heatwaves, can ensure that 
at-risk populations like older people receive timely and effective 
care. Community health workers should be trained to recognise signs 
of heat-related illnesses, such as dehydration, heat exhaustion, and 
heatstroke, and to provide immediate assistance or referrals to 
higher-level care.

4) Building age-friendly communities by proactively establishing heat 
emergency response teams can help monitor older residents’ living 
conditions and well-being through regular phone check-ins, home 
visits, and cooling supply distribution. Additionally, community-led 
health education campaigns can raise residents’ heat risk awareness 
and self-protection capabilities.

6. Conclusion

This study developed an innovative model for assessing urban heat 
vulnerability by integrating exposure, sensitivity, and adaptive capacity 
into a comprehensive framework. The model incorporates key in-
dicators, such as LST, NDVI, and adaptation resources like metro access, 
hospitals, and PCDI, to provide a nuanced understanding of vulnera-
bility. By leveraging GeoDetector, the model effectively identifies key 
factors influencing heat vulnerability, including the interactions be-
tween environmental, demographic, and adaptive components, and of-
fers actionable insights for urban planning and policy development. Our 
research showed that education level emerged as the most critical factor 
in Guangzhou, reflecting its role in enhancing risk perception and 
adaptive capacity. In contrast, Jinan’s heat vulnerability was primarily 
driven by the proportion of older populations, underscoring the 
heightened risks ageing communities face.

Focusing on the community-scale level for a finer-grained analysis 
enables identifying urban hotspots (e.g., high-risk areas in Jinan and 
Guangzhou, as shown in the Results). This approach provides crucial 
support for guiding heat stress mitigation measures, particularly by 
enhancing the adaptive capacity of local communities. High-risk com-
munities in both cities were concentrated in socioeconomically disad-
vantaged areas, including older urban centres and underdeveloped 
peripheral zones. These findings emphasise the need for targeted in-
terventions to reduce vulnerability in such areas.

It is crucial to acknowledge the limitations inherent in this study. 
Primarily, the research exclusively examines the summer of 2023, 
thereby constraining the ability to capture temporal changes or seasonal 
variations in urban heat vulnerability. Additionally, while the focus on 
Guangzhou and Jinan facilitates an in-depth analysis, the findings may 
not be wholly generalisable to other urban environments. These cities 
exhibit unique climatic conditions, socio-economic structures, and 
urban development patterns distinct from those found in regions char-
acterised by diverse cultural, geographical, or climatic attributes.

Moreover, despite conducting a comprehensive literature review to 
guide the selection of indicators, certain relevant factors remain 
underexplored due to constraints in available data. For instance, the 
potential influence of other vulnerable populations, such as children, as 
well as housing conditions and access to green spaces, could signifi-
cantly impact adaptive capacity and exposure to heat stress. Unfortu-
nately, these crucial aspects were not adequately addressed within the 
scope of this study.

Upcoming research may utilise dynamic and temporal datasets to 
elucidate seasonal variations and long-term trends in heat vulnerability. 
Such an approach will facilitate real-time updates and yield more precise 
risk assessments. By extending the scope of the study to encompass 
diverse urban contexts, including cities in South Asia, Southeast Asia, 
Africa, the Middle East, and Latin America, its applicability is enhanced 
and valuable insights are provided into varying socio-economic and 
environmental conditions.

Enhancing data collection remains paramount. This can be done by 

incorporating high-resolution thermal imagery, comprehensive de-
mographic surveys, and meticulous green space mapping to refine 
vulnerability assessments. Furthermore, future research should priori-
tise the tracking and forecasting of urban transformations, including 
demographic shifts, advancements in educational attainment, income 
disparities, and infrastructure development. This focus will enable the 
design of resilient and adaptive strategies that respond effectively to the 
evolving urban landscape.

Moreover, addressing gaps in indicator selection—particularly con-
cerning children’s vulnerability, housing quality, and access to cooling 
infrastructure—will contribute to a more robust understanding of 
adaptive capacity. Ultimately, developing heat vulnerability risk maps 
will be essential for governments and urban planners. These maps will 
assist in implementing targeted strategies at the community level, 
effectively addressing extreme heat, bolstering adaptive capacity, and 
safeguarding vulnerable populations.
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