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ABSTRACT: Remote sensing data play a critical role in improving numerical weather prediction (NWP). However, the
physical principles of radiation dictate that data voids frequently exist in physical space (e.g., subcloud area for satellite
infrared radiance or no-precipitation region for radar reflectivity). Such data gaps impair the accuracy of initial conditions
derived from data assimilation (DA), which has a negative impact on NWP. We use the barotropic vorticity equation to
demonstrate the potential of deep learning augmented data assimilation (DDA), which involves reconstructing spatially
complete pseudo-observation fields from incomplete observations and using them for DA. By training a convolutional
autoencoder (CAE) with a long simulation at a coarse “forecast” resolution (T63), we obtained a deep learning approxi-
mation of the “reconstruction operator,” which maps spatially incomplete observations to a model state with full spatial
coverage and resolution. The CAE was applied to an incomplete streamfunction observation (∼30% missing) from a
high-resolution benchmark simulation and demonstrated satisfactory reconstruction performance, even when only very
sparse (1/16 of T63 grid density) observations were used as input. When only spatially incomplete observations are used,
the analysis fields obtained from ensemble square root filter (EnSRF) assimilation exhibit significant error. However, in
DDA, when EnSRF takes in the combined data from the incomplete observations and CAE reconstruction, analysis error
reduces significantly. Such gains are more pronounced with sparse observation and small ensemble size because the DDA
analysis is much less sensitive to observation density and ensemble size than the conventional DA analysis, which is based
solely on incomplete observations.

SIGNIFICANCE STATEMENT: Data assimilation plays a critical role in improving the skills of modern numerical
weather prediction by establishing accurate initial conditions. However, unobservable regions are common in observa-
tion data, particularly those derived from remote sensing. The nonlinear relationship between data from observable
regions and the physical state of unobservable regions may impede DA efficiency. As a result, we propose that deep
learning be used to improve data assimilation in such cases by reconstructing a spatially complete first guess of the
physical state with deep learning and then applying data assimilation to the reconstructed field. Such deep learning
augmentation is found effective in improving the accuracy of data assimilation, especially for sparse observation and
small ensemble size.

KEYWORDS: Data assimilation; Numerical weather prediction/forecasting; Machine learning

1. Introduction

The assimilation of satellite and radar remote sensing data
has greatly enhanced numerical weather prediction (NWP)
by improving initial conditions (Alley et al. 2019; Jung et al.
2008; Simmons and Hollingsworth 2002). However, due to
the nature of remote sensing techniques, significant data gaps
exist (e.g., Zheng et al. 2021). Clouds and heavy precipitation,
for example, can significantly corrupt satellite infrared radi-
ance data; thus, most weather centers only assimilate radiance
in cloud-free regions, though some have begun to include the
information above cloud tops (Geer et al. 2018). In the case of
radar remote sensing, the radar echoes of precipitation are
clustered and provide limited innovations in regions out of the
rainfall areas (Sodhi and Fabry 2020). As velocity observations
can only be derived from the areas with radar echoes, the

improvement of the wind analysis field is also limited. Further-
more, these areas may be obscured by high-level clouds, limit-
ing the improvement from radiance observations of spaceborne
infrared images (Errico et al. 2007). As a result, without the
key information outside of the observation range, we cannot
obtain an analysis field with a completely consistent dynamics
and thermodynamics environment (Fabry and Meunier 2020).
Some multiscale approaches have been proposed to smooth
either the background error covariance or observations to
allow the use of a larger localization window and increase
the impact region of observation (Caron and Buehner 2018;
Miyoshi and Kondo 2013; Ying 2020).

In this study, we adopt a different path by proposing the use
of deep learning to fill the data voids in remote sensing scenarios
as an enhancement to conventional data assimilation (DA). The
convolutional autoencoder (CAE) is a highly effective deep
learning model structure that has been widely used in image
denoising and inpainting (Mao et al. 2016; Xie et al. 2012). It rep-
resents high-dimensional complex data using an unsupervisedCorresponding author: Xiaoming Shi, shixm@ust.hk
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low-dimensional latent space. We show, using a prototype prob-
lem, that it is possible to use a CAE to reconstruct full dynamical
fields from limited observations. The reconstructed dynamical
field then serves as pseudo-observations for DA and enhances
its impact. We term this approach as deep learning augmented
data assimilation (DDA).

The principle idea of DDA can be explained as follows.
A DA cycle, in general, has two steps: prediction and analysis.
The prediction step maps P(xj|yj) to P(xj11|yj), where xj is the
atmospheric state vector at time j, yj is the observation vector,
and P denotes probability distribution functions. This step is
completed by integrating an NWP model in time. The analysis
step computes P(xj11|yj) ´ P(xj11|yj11), after obtaining the
prediction P(xj11|yj) and new observation yj11, by the applica-
tion of Bayes’s rule. For the reasons stated above, observation
y may have different spatial coverage than state variables x.
We want to find a way to map y to a newly reconstructed
pseudo-observation xr that covers the entire domain of the
NWP model1 to fill in the data gaps. Deep learning is a promis-
ing solution to this difficult task. In the usual DA, the observa-
tion is related to a state vector by an observation operator, i.e.,
y = h(x). What we propose here is using neural networks to ap-
proximate h21, with which we can compute y ´ xr, and thus
converting the analysis step of DA to computing P(xj11|xrj11),
instead of P(xj11|yj11).

Training a deep learning model to approximate h21 necessi-
tates a large number of samples that reveal the relationship
between atmospheric states and spatially incomplete observa-
tions. In practice, such samples can be obtained from histori-
cal ensemble simulations, which contain a massive amount of
data and might be adequate for training deep learning models
to achieve high fidelity, although evaluation is needed for any
given application. However, training machine learning models
for real NWP cases is computationally expensive and time-
consuming. This study uses a simple barotropic vorticity
model as a proof-of-concept for the method before future ap-
plications to realistic NWP cases. As a result, for DA and
forecast experiments, we employ a barotropic vorticity equa-
tion model. The impact of introducing a deep learning h21

approximation in DA is evaluated and demonstrated. This
h21 approximation is referred to as the “reconstruction oper-
ator” in this context.

Previous studies have applied machine learning techniques
to observation bias correction in DA (Jin et al. 2019) and re-
duced-order deep DA (Casas et al. 2020). The current research
takes a novel approach to improve DA. Because our goal is
not to retrieve a variable from collocated remote sensing data,
our approach differs significantly from traditional remote sens-
ing retrieval (Aires et al. 2002; Bobylev et al. 2009). Instead,
we are trying to “generate” data about unobservable regions.

In the context of NWP, this generation should be conditioned
on observation information.

2. Models and methods

a. Barotropic vorticity equation (BVE)

The idealized atmospheric model we used is the spectral
BVE model on a sphere provided by the Geophysical Fluid
Dynamics Laboratory (GFDL). Following Vallis et al. (2004),
the governing equation of the BVE model is

z

t
1 J(c, z 1 f ) � S 2 rz 1 k=4z, (1)

where c is the streamfunction, z is the barotropic vorticity,
f is the Coriolis parameter, and J is the Jacobian operator.
On the right-hand side are stochastic stirring, linear damping,
and hyper-diffusion, respectively. Details on how these terms
were implemented are documented in Vallis et al. (2004),
who demonstrated that this simple model can qualitatively
reproduce extratropical circulation variability at large scales.
A Markov process with a decorrelation time scale of 2 days
represents the stirring term S, which represents the effect of
baroclinic eddies on barotropic flow. It stirs a small range of
wavenumbers in the spectral space and its effect in physical
space is limited to Northern Hemisphere (NH) midlatitudes.

b. Convolutional autoencoder

CAEs are a class of methods in deep learning and have
been extensively used in computer vision. The dimension of z
is usually much smaller than that of x. As a result, the encod-
ing process is a type of compression. The decoder, which is
implemented as a series of transposed convolutional layers,
computes the decompression mapping, z ´ xr, where xr has
the same dimension as x and is a reconstruction of the original
state vector (image). A CAE is trained by minimizing a loss
function, such as the mean squared error (MSE) of xr com-
pared to x, using stochastic gradient descent, which optimizes
convolutional and transposed convolutional layer parameters.
If we think of the training dataset for a CAE as an ensemble,
which implicitly describes a probability distribution of x, then,
in parallel to DA, we can describe the two steps of a CAE as
encoding, which computes P(x) ´ P(z|x), and decoding,
which computes P(z|x)´ P(xr|z).

Because our intention here is to reconstruct a dynamical
variable field from observations, we need to change the CAE
from its usual configuration. The input to our encoder should
be the observation y = h(x), while the output of the decoder is
still xr. In the loss function, we compare xr against the dynamical
field x that generates y. In other words, for our reconstruction
operator, the encoder part computes P(y) ´ P(z|y), and the
decoder part computes P(z|y)´ P(xr|z).

The structure of the CAE we used is shown in Fig. 1. Our
baseline group of experiments have a dense observation grid,
which means every state variable could be observed. For the
baseline group, the encoder has 12 convolutional layers and
maps an observation field (spatially incomplete streamfunction)
of the size 96 3 192 to a latent vector of the length 1024. The

1 The symbol xr is used here, instead of yr, because in the con-
text of remote sensing, y may be impossible to have a full spatial
coverage (e.g., reflectivity is unavailable in clear-sky regions). This
implies a conversion from remote sensing to model state variables.
The prototype problem we studied here did not involve such con-
version, but CAE can be structured to perform such tasks.
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decoder has 14 transposed convolutional layers and maps the
latent vector to a reconstructed field of size 96 3 192. For
groups of experiments with a sparse observation grid of 483 96
and a very sparse observation grid of 24 3 48, we remove the
first two and four convolutional layers in the encoder, respec-
tively, to make it compatible with coarse resolution data. To get
a reconstructed streamfunction field with full coverage of the
size 96 3 192, the structure of the decoder part is the same for
different groups of experiments. In this CAE, the layers with
the 1 3 1 filters work as compression layers which reduce the
number of channels from the previous layer.

The loss function we used for training the CAE is

L � 1
2
(LMSE 1 LMS-SSIM), (2)

where LMSE is the MSE, and LMS-SSIM is the multiscale struc-
tural similarity index measure (MS-SSIM) loss. The LMSE is a
measure of absolute error and is calculated with normalized
streamfunction fields (by mean and standard deviation). The
MS-SSIM (IMS-SSIM) measures the structural similarity between
two images, and its value is between zero and one, with a higher
index value indicating higher similarity as shown in Eq. (7) of
Wang et al. (2003).

The approach is based on modeling image luminance,
contrast, and structure at multiple scales. The overall MS-SSIM
evaluation is obtained by combining the measurement at dif-
ferent scales. The MS-SSIM has resulted in much better per-
formance than the single-scale SSIM approach but at the cost

of a relatively lower processing speed. Thus, LMS-SSIM for a
single pair of images is defined as (12 IMS-SSIM).

c. Ensemble square root filter (EnSRF)

The serial EnSRF method (Tippett et al. 2003; Whitaker and
Hamill 2002) is a deterministic ensemble filter formulation and
used in our study. The flow-dependent representation of back-
ground error covariance is provided by an ensemble of model
state realizations. Because the observations are not perturbed,
the EnSRF method does not introduce additional sampling
noise like the classical ensemble Kalman filter (EnKF) (Burgers
et al. 1998). The update equations of EnSRF can be written as

xa � xb 1 K[y 2 h(xb)], (3)

x′ai � b(I 2 aKH)x′bi , (4)

where an overbar denotes the ensemble mean, a prime denotes
the perturbation of an ensemble member, and subscript i the ith
member among the N ensemble members. The superscripts a
and b in the equations denote the analysis and the background
states, respectively. The a is the square root modification factor,
which is defined as

a � 1 1

������������������������
R(HPbHT 1 R)21

√[ ]21

, (5)

where H is the linearized version of the observation operator
h. The background state and observation error covariances are

FIG. 1. The structure of the convolutional autoencoder used in this study. The full encoder accepts observation images (y) of the size
96 3 192 and has 12 convolutional layers and 1 fully connected layer. The modified encoder for experiments with sparse and very sparse
observations removes the first 2 and 4 layers, respectively, and consequently has 10 or 8 convolutional layers (indicated by a blue shad-
ing). The latent space has a dimension of 1024. There are 14 transposed convolution layers in the decoder. The reconstructed decoder
output (xr) has the same dimension as the full input observation, 96 3 192. Each convolutional layer or transposed convolution layer is
followed by a rectified linear unit as the activation function, except that the last layers of encoder and decoder (last row of each table)
have no activation functions.
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denoted as P and R, respectively. The matrix K is the Kalman
gain matrix, calculated as follows:

K � PbHT(HPbHT 1 R)21: (6)

We did not calculate the P and H in the equation directly.
Instead, HPbHT and PbHT are approximated based on the en-
semble members through the following:

HPbHT � 1
N 2 1

∑
i
[h(xbi ) 2 h(xb)][h(xbi ) 2 h(xb)]T, (7)

PbHT � 1
N 2 1

∑
i

(xbi 2 xb )[h(xbi ) 2 h(xb)]T: (8)

The Gaspari–Cohn localization (Gaspari and Cohn 1999) was
applied to reduce the sampling noise due to the use of limited-
size ensembles. The distance at which covariance tapers to zero
is referred to as the localization radius r, and r = 15 grid spacings
were used in this study. To maintain adequate ensembles
spread, a multiplicative inflation factor (b = 1.15) is used
(Anderson and Anderson 1999). We tested different values
of the localization radius (5, 10, 15 and 20) first and found
r = 15 shows the minimum analysis error. Then three groups
of inflation factors (1.05, 1.10 and 1.15) were tested at r = 15.
The inflation factor of 1.15 yielded the minimum analysis error
for the baseline group and this value was chosen for further
evaluation. In addition, we found the assimilation results with
complete observations are less sensitive to the choice of the
inflation factor in the baseline dense group.

3. Experiments design

a. CAE training

A large number of simulation samples are needed to train
a deep learning model for building the relationship between
the full streamfunction field and incomplete observations. For
the training of the CAE, we ran the GFDL model for 50 years
at T63 resolution, which has a grid spacing of approximately
1.98 3 1.98 at the equator and 96 3 192 grid points in total.
The 6-hourly data were saved, and the first 100 days of data were
discarded as spinup. As a result, we have roughly 73 000-time
slices in total. Then, different time slices from this dataset are
randomly shuffled and partitioned into training and validation
datasets, each of which contains 90% and 10% of the total
dataset, respectively. The validation dataset is required be-
cause overfitting may occur in later stages of the model train-
ing process. Thus, we train the CAE with a training dataset
and evaluate the loss over the validation set after each epoch;
a new result is saved only if the validation loss is smaller than
the previous epoch.

Streamfunction from the datasets is the state variable x here
and was used to produce the spatially incomplete observation
y. The observation y is the same as the streamfunction at grid
points where z # 5 3 1026 s21 in the Northern Hemisphere
and z $ 25 3 1026 s21 in the Southern Hemisphere. Other
grid points are masked as unobservable regions. The stream-
function data were normalized with its mean and standard

deviation before inputting to the CAE and stays within
210 to 10. Large constants of 100 and 2100 are used to mask
unobservable grid points in the Northern and Southern Hemi-
spheres, respectively. This masking scheme is intended to re-
flect the extratropical association of clouds with storminess
(strong vorticity). Masking occurs mostly in the NH because
the Southern Hemisphere has no stirring and thus few eddies.
Unobservable regions cover an average of 30.2% of the NH
and 15.6% of the global area. Random noise with the ampli-
tude of 0.05 was added to the normalized streamfunction
observation to enhance the CAE’s error tolerance.

Additionally, as described in the next section, for testing
the efficacy of the CAE reconstruction with respect to differ-
ent observation densities, we have three main groups of ex-
periments, for which the observation grids are 96 3 192
(Dense), 48 3 96 (Sparse), and 24 3 48 (Very-Sparse), re-
spectively. Thus, we trained three CAE models in total, and
the input observation to the CAEs for the sparse and very
sparse groups is coarsened accordingly.

In summary, input to the CAE is the (normalized) stream-
function covering 70% area of the NH and most of the Southern
Hemisphere with artificial noise and being coarsened where nec-
essary. The CAE output is the reconstructed streamfunction
that covers the entire globe and always has a full resolution (on
the 96 3 192 grid). During the CAE training, the reconstructed
full field is compared to the spatially complete streamfunction
field without masks and noise.

We configured and trained our CAE with TensorFlow
2.4.1. The adaptive moment estimation (Adam) algorithm
was used to optimize the CAE’s parameters with 160 epochs
of iteration, which were carried out in four 40-epoch stages,
with learning rates of 1 3 1024, 5 3 1025, 2.5 3 1025, and
1 3 1025, respectively. The loss function for the validation data-
set is ∼1.1 3 1023 by the end of the training, and the MSE by
the end is ∼0.83 1023 (for the normalized streamfunction data).

b. Assimilation experiments

We evaluate the performance of the conventional use of
EnSRF and its combination with deep learning using the
BVE model at T63 resolution. The benchmark simulation
(“truth run”), on the other hand, is obtained by running the
BVE model at the higher T85 resolution, which has a total of
128 3 256 grid points. This different resolution was purpose-
fully chosen for evaluating the performance of the trained
CAE because we cannot have a perfect model for generating
training datasets and forecasts in real-world applications. If
we use T63 resolution for the truth run also, the benefits of
deep learning reconstruction become smaller when having
dense observations but are still substantial if very sparse obser-
vations are used (cf. the appendix). To be consistent with the
T63 simulation, we ran the T85 simulation for 51 years and
then discarded the first 50 years; the data from the last year
was used as the “truth.”

Continuous DA cycling experiments are conducted over 1 year
with a cycling period of 1 day, and performance metrics (RMSE)
are averaged over the last 100 cycles. We initialized the ensemble
with random instances from the set of 50-yr model states obtained
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from a single continuous integration (e.g., Sakov and Oke 2008;
Blyverket et al. 2019). A single analysis cycle includes a prediction
step in which the ensemble is propagated forward for 1 day and a
filter update step in which the prior ensemble from the prediction
is fused with observations to form the posterior ensemble
(analysis).

To evaluate the efficacy of deep learning reconstruction
when different amounts of observation are available, we con-
duct three main groups of experiments, which are referred to
as “Dense Observation,” “Sparse Observation,” and “Very-
Sparse Observation” groups. Table 1 summarizes the salient
characteristics of each group.

1) DENSE OBSERVATION

This is a baseline group with the observation grid being the
same as the T63 model grid (96 3 192), onto which the truth
streamfunction is interpolated. This group comprises three
assimilation experiments, “FullObs,” “PartObs,” and “MixObs.”
FullObs experiment has observation with full spatial coverage
(i.e., no masking based on vorticity). The FullObs was adopted to
indicate the upper limit of assimilation accuracy if CAE re-
construction were “perfect.” With the scheme described in
section 3a, the PartObs experiment has spatially incomplete
observations that are masked based on vorticity. In FullObs
and PartObs, random observation noise with an amplitude of
1.5 3 106 m2 s21 was added to the observation, accounting
for approximately 20% of the standard deviation of the observa-
tion. The same random noise was added to the sparse and very
sparse groups. MixObs generates observations by combining
available observations from PartObs and the CAE reconstruc-
tion, with values from the former in the observable area and the
latter in the unobservable area. The CAE reconstruction is based
on PartObs.

2) SPARSE OBSERVATION

In this group, the observation grid resolution is halved in
each direction, so without CAE reconstruction, only 1/4 of

the T63 grid points are observed. The PartObsS experiment in
this group has spatially incomplete observations with vorticity-
based masking. In the MixObsSS experiment, observations are
obtained by combining available observations from PartObsS
and CAE reconstruction coarsened onto the sparse observa-
tion grid. As a result, the observation in MixObsSS is on the
same grid as the observation in PartObsS. The MixObsSC
experiment, on the other hand, keeps the full-resolution CAE
reconstruction and combines it with available observation in
PartObsS; thus, its observation is on the T63 grid. The CAE
reconstruction is based on PartObsS.

3) VERY-SPARSE OBSERVATION

This group has very sparse observation for evaluating the
performance of using the CAE reconstruction to enhance as-
similation when very limited observations can be obtained.
The observation grid resolution is further reduced, so the
PartObsVS experiment here has only 1/16 of the observations
in PartObs. Based on the very sparse observation and the recon-
structed results, we still have two types of mixed observations;
the observation grids of MixObsVSS and MixObsVSC have
24 3 48 and 96 3 192 points, respectively. The CAE recon-
struction is based on PartObsVS.

All the experiments described above are conducted with
80 ensemble members, which is an adequate ensemble size
and seemingly affordable by operational NWP centers. How-
ever, when the ensemble size is small, the potential benefits of
the new method must also be evaluated. We also ran experi-
ments with a small ensemble of 10 members. At the end of
the following section, the results of those small ensemble ex-
periments are compared to those of larger ensembles. In this
study, sensitivity experiments on the observation density and
the number of ensemble members used the parameters tuned
with respect to the dense observation group. The qualitative
nature of some of the results might change if the localization
and inflation are tuned for each unique case, which we will
test in future work.

TABLE 1. Summary of the data assimilation experiments.

Group Observation Description Grid

Dense Obs (baseline) FullObs Truth streamfunction interpolated onto T63 grid with full
spatial coverage

96 3 192

PartObs Truth streamfunction interpolated onto T63 grid and partly
masked based on vorticity thresholds

96 3 192
(masking 30% of NH)

MixObs Mixed field from PartObs and CAE reconstruction 96 3 192
Sparse Obs PartObsS 1/4 of PartObs observation 48 3 96

(masking 30% of NH)
MixObsSS Mixed field from PartObsS and CAE reconstruction

coarsened onto the sparse grid
48 3 96

MixObsSC Mixed field from PartObsS and complete CAE
reconstructed field on the T63 grid

96 3 192

Very-Sparse Obs PartObsVS 1/16 of PartObs observation 24 3 48
(masking 30% of NH)

MixObsVSS Mixed field from PartObsVS and CAE reconstruction
coarsened onto the very sparse grid

24 3 48

MixObsVSC Mixed field from PartObsVS and complete CAE
reconstructed field on the T63 grid

96 3 192
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4. Results

a. Deep learning

Figure 2 shows the vorticity and compares one instance of
the streamfunction field from true field, observation, and
CAE reconstruction. Figure 2c is the dense observation field
of FullObs which was generated by adding random noise to
the true field (Fig. 2b), and in PartObs (Fig. 2d), information

is missing in regions where the streamfunction has relatively
low values, which is usually associated with high vorticity
(Fig. 2a). With limited information from the PartObs, the
CAE reconstructed streamfunction (Fig. 2e) resembles the
true full field closely. The CAE reconstruction contains minor
errors in some details, such as the intensity of local maxima
and minima, but gains accurate patterns in the large-scale dis-
tribution of eddies. It also smooths out the random noise in

(a) (b)

(c) (d)

(e) (f )

FIG. 2. The (a) vorticity (1026 s21) and streamfunction (106 m2 s21) on a randomly selected day from (b) true field,
(c) FullObs observation, (d) PartObs observation, (e) CAE reconstruction based on PartObs, and (f) MixObs, which
is generated by combining the CAE reconstruction in(e) and the PartObs observed streamfunction in (d). The
Southern Hemisphere is not shown because there is no stochastic stirring and therefore few eddies.
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the observations, which might benefit simulations in real appli-
cations. The mixed streamfunction field (MixObs; Fig. 2f) re-
serves the partial observations which we can get directly from
PartObs and complements the missing information with the
CAE reconstruction. This mixing makes the representation in
observable regions more accurate but also brings back the ran-
dom noise in observable regions.

To demonstrate that the CAE indeed learned a “skillful” of
reconstruction instead of simply picking out resembling snap-
shots from training data, we compared the root-mean-square
error (RMSE) in the mixed observations (MixObs, Mix-
ObsSC, and MixObsVSC) with the analog retrieval (ResObs),
in which we select the instance in the CAE training dataset
that resembles the PartObs fields most (measured by RMSE
in observable regions). Figure 3 depicts the RMSE of those
four groups versus truth data (including all grid points) over the
last 100 days of assimilation cycling. We can see that the RMSE
of the mixed fields of CAE reconstructions and PartObs is on
the order of 2 3 106 m2 s21, whereas the RMSE of the analog
retrievals is 4–5 times higher than the MixObsVSC. Therefore,
the CAE reconstruction is highly skillful and differs from
“retrieving” images from its training dataset.

Figure 3 also shows that MixObs has comparable error to
MixObsSC, suggesting that the CAE model can reconstruct
the streamfunction accurately even with only 1=4 of the dense
observations. The mixed result of the reconstruction based on
1/16 of dense observations, on the other hand, has approximately
1.5 times the error as the other two types of mixed observations.
As a result, more observations must be fed into the CAE model
to reduce the CAE reconstruction error.

b. Assimilation

1) BASELINE ASSIMILATION

Figures 4a–c show the analyzed streamfunction for the day
shown in Fig. 2. The analysis fields from the FullObs (Fig. 4a)

and MixObs (Fig. 4c) are closer to the true field (Fig. 4g) than
that from the PartObs (Fig. 4b). The difference between the
analyzed streamfunction and the true field is larger for the
PartObs (Fig. 4e) than for the FullObs (Fig. 4d) and MixObs
(Fig. 4f). The analyzed results from the complete observations
contain more details which are consistent with the true field.
Figure 4h shows the forecast and analysis RMSE of the ensem-
ble means of the three assimilation experiments (FullObs,
PartObs, and MixObs) against the truth data for the whole
cycling process in the baseline group (Dense). The large dis-
crepancies between ensemble mean priors and posteriors are
mainly caused by model errors that are due to the stochastic
stirring term in the BE model and the resolution differences
between the benchmark simulation and ensemble simulations.
When we look at the RMSE of the posterior ensemble mean,
we see that MixObs have lower analysis error than PartObs
for almost all assimilation cycles. PartObs analysis has a mean
last-100-day RMSE of 1.803 106 m2 s21, which is 64% greater
than MixObs analysis. Although the RMSE of MixObs analy-
sis is still much larger than the RMSE of FullObs analysis, for
which spatially complete observations are made available, the
improvement due to CAE reconstruction is still quite notable
in these experiments with dense observations.

Besides, the different levels of prior ensemble errors in those
experiments have a significant impact on posterior ensemble
errors. As shown in Fig. 4h, the PartObs forecast has the great-
est error of 3.60 3 106 m2 s21; in contrast, the two experiments
with full-coverage observations in FullObs and MixObs have
relatively lower RMSE of 2.51 3 106 and 2.88 3 106 m2 s21,
respectively. What should be mentioned is that the difference
between the average prior error of the ensemble of MixObs
and FullObs is larger than the difference between their poste-
rior errors. This indicates that the error growth rate of MixObs
experiments is relatively slow, potentially resulting from the
denoising ability of deep learning reconstruction. These find-
ings demonstrated that by supplementing assimilation with

FIG. 3. The RMSE (106 m2 s21) of CAE reconstructions and analog retrieval (ResObs) compared
with truth observation of the last 100 days. MixObs, MixObsSC, and MixObsVSC are defined
in section 3 and summarized in Table 1. ResObs denotes the analog retrieval, which is the full
streamfunction field retrieved from the CAE training dataset by finding the instance that resembles
the spatially incomplete observations (PartObs) most (measured by RMSE at observable grid points).
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CAE reconstruction, we can obtain significantly more accurate
analysis and prediction results using spatially complete data
than when only limited observations are used. The mean ratios
of the ensemble spread to the RMSE of the forecast for Full-
Obs, MixObs, and PartObs in this baseline assimilation group
were 0.85, 0.7, and 0.65, respectively. In this study, we used dif-
ferent resolutions for the forecast model (T63) and truth
model (T85). The model error due to resolution difference
was relatively large, leading to a relatively large RMSE of the
forecast and a lower spread-to-RMSE ratio. We conducted
identical resolution simulations and added the results to the
appendix. For those simulations using T63 resolution for both

the true and forecast models, the average forecast spread-
RMSE ratio is close to one for all experimental groups.

2) SENSITIVITY TO OBSERVATION DENSITY

Figure 5 compares an instance of the streamfunction recon-
struction based on the smaller amounts of observations in the
Sparse and the Very-Sparse group. The CAE can reconstruct
the streamfunction pattern shown in Figs. 5b and 5e, which
resembles the FullObs in Fig. 2a very well, with very limited
observations in Figs. 5a and 5d, though the intensity of the
reconstructed field from the Very-Sparse Observation exhib-
its more errors than the Sparse Observation. The mixed

(a) (b) (c)

(d) (e) (f )

(g) (0.37)
(1.80)
(1.10)
(2.51)
(3.60)
(2.88)

(h)

FIG. 4. Analyzed streamfunction from (a) FullObs, (b) PartObs, (c) MixObs, the difference between analyzed and (g) true streamfunc-
tion from (d) FullObs, (e) PartObs, (f) MixObs for the day shown in Fig. 2 and (h) root-mean-square error (RMSE) (106 m2 s21) of the
prior ensemble (forecast) mean (dashed lines) and posterior ensemble (analysis) mean (solid lines) during the assimilation cycles for the
FullObs (red lines), PartObs (blue lines), and the MixObs (green lines) experiments. The average RMSE for the last 100 days is shown as
the numbers in brackets in the legend. The initial (day zero) RMSE is 7.53 106 m2 s21.
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streamfunction based on 1/4 of the Dense Observation infor-
mation (Fig. 5c) contains more details in the unobservable re-
gion and more random noise in the observable region
compared with that based on the very sparse observation net-
work, which has 1/16 of the observations in the Dense experi-
ment (Fig. 5f).

To assess the impact of observation density on DA, the
mean RMSEs of the analysis ensemble mean of the three ex-
perimental groups for the last 100 assimilation cycles are

shown in Fig. 6. When we compare the three groups, we can
see that the Dense group outperforms the other two sparse
groups, which have less observation data. Analysis error in-
creases as the observation density decreases, especially in ex-
periments with spatially incomplete observations. PartObsS
analysis error increases by 49% when compared to PartObs,
and PartObsVS analysis error increases by more than twice as
much. In the Dense group, the mean posterior RMSE shows
the same result as Fig. 4d. After reducing the observation

(a)

(b)

(c)

(d)

(e)

(f )

FIG. 5. The streamfunction (c) on a randomly selected day from (left) the sparse group and (right) the very sparse
group; (a),(d) the observation of PartObsS and PartObsVS; (b),(e) the CAE reconstruct fields based on (a) and (d),
respectively; (c),(f) the mixed observation of MixObsSC and MixObsVSC, respectively.
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density by a factor of 1/4, the analysis error of MixObsSS in
the Sparse group, which is reconstructed from PartObsS, in-
creases by only 13% when compared to MixObs analysis,
which is much smaller than the PartObsS analysis. Though in
the Very-Sparse group we only have 1/16 data of the dense
observation, the streamfunction reconstructed by the CAE
model in MixObsVSS still introduces notable improvement
and lowers the analysis error by almost 50% compared with
PartObsVS.

Also shown in Fig. 6 is the performance of assimilating the
CAE reconstructed observations with full T63 resolution
(MixObsSC and MixObsVSC). The reconstruction is based
on coarsened 1/4 and 1/16 observations from PartObs, and as-
similation experiments using the complete reconstructed ob-
servation yield different results than those using coarsened
reconstruction data. The MixObsSC analysis exhibits a
slightly larger error than the MixObsSS, probably due to the
error introduced by the CAE reconstruction itself.

However, in the Very-Sparse group, the assimilation in
MixObsVSC significantly lowers the analysis error compared
with MixObsVSS. This implies that when we have a very lim-
ited amount of observation data, the benefit of deep learning
reconstruction is more beneficial, even though it contains
some inherent error.

Overall, even though mixed observation data perform differ-
ently in different groups, the benefits of deep learning aug-
mentation are significant when compared to assimilating the
spatially incomplete observations (1/16) only. Very interestingly,

although MixObsVSC reconstructs from a very limited amount
of observation, its analysis shows a slightly smaller error than
the PartObs analysis in the Dense group. This further suggests
the necessity of using deep learning to reconstruct pseudo-
observations at locations without observations.

3) SENSITIVITY TO ENSEMBLE SIZE

Last, we examine the sensitivity of assimilation to ensemble
size by comparing the result from the 80-member ensemble to
that of a 10-member ensemble. The localization and infla-
tion parameters tuned for 80-member ensembles are used
for 10-member ensembles. The performance of 10-member
ensemble could be improved with its tuned localization and
inflation parameters. Figure 7 represents the mean analysis
RMSE of assimilation experiments. It is expected that the
analysis errors with 80 ensemble members are lower for the
same observation dataset. However, the experiments that
assimilate spatially incomplete observations without deep
learning augmentation are more sensitive to ensemble size
than the experiments with deep learning augmentation. For
example, in the Dense group (Fig. 7a), shrinking the ensem-
ble size increases the RMSE of the PartObs analysis by
62%; in contrast, the RMSE of the MixObs analysis only in-
creases by 25%. The relatively larger increase in the FullObs
analysis is most likely due to the FullObs’ very low RMSE
with the large ensemble, which is a “perfect” setting. Figure 7d
depicts the analysis error from day 250 to day 350 in the Dense
group experiments. The two PartObs experiments consistently
exhibit a larger gap than the FullObs and MixObs groups.

In Fig. 7a, we can also find that even with only 10 ensemble
members, the MixObs observation with full coverage can
improve the assimilation performance compared with the
PartObs analysis with the large ensemble size of 80. Figure 7b
shows similar results. Assimilation in either MixObsSS or
MixObsSC with only 10 ensemble members can reduce anal-
ysis errors to a level lower than that of the PartObsS analysis
with 80 members. Furthermore, the MixObsSC analysis with
10 members yields a lower analysis error than theMixObsSS anal-
ysis, which contrasts with the results obtained with 80 members.
This suggests that with limited ensemble members, reconstructed
dense observations can obtain better analysis results than sparse
observations even with the reconstruction errors.

In Fig. 7c for the Very-Sparse group, we can see that reducing
the ensemble size has limited influence on the analysis result of
MixObsVSC; the RMSE increases by only 15% which is much
smaller than the RMSE increase of the MixObsVSS experi-
ments. This demonstrates that the CAE reconstruction can ob-
tain an analysis field of high accuracy even with very sparse
observations.

Another interesting contrast shown in Figs. 7b and 7c is that
when observation is spatially incomplete and sparse, using
CAE reconstruction with the Dense resolution (MixObsSC
and MixObsVSC) makes the analysis results significantly less
sensitive to ensemble size than using reconstruction on the
(very) sparse grid only. These findings imply that when obser-
vation is sparse, reconstructing spatially complete and more
dense pseudo-observation via the CAE model may assist a
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FIG. 6. The mean RMSE (106 m2 s21) of the last-100-day posterior
ensemble mean streamfunction for the Dense, Sparse, and Very-Sparse
groups. The error bars indicate plus/minus one standard deviation.
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small ensemble in achieving satisfactory performance, which
may even be comparable to large ensemble assimilation with
spatially incomplete but more dense observation. Thus, deep
learning augmentation can potentially help reduce the compu-
tational cost of DA substantially.

5. Summary and discussion

The targeted scenario of this investigation is the assimila-
tion of spatially incomplete observations, such as remote sens-
ing data. In the case of radar observation, no information is
available unless hydrometeors are present. Under clouds and
precipitation, information on satellite infrared radiance is un-
available. The unobservable regions in such scenarios contain
important environmental information and, in some cases, act
as barriers to further DA improvement (Fabry and Meunier
2020).

Is it possible to “retrieve” the full physical fields from spa-
tially incomplete remote sensing observations to enhance DA?

Based on our idealized experiments, in which a deep neural net-
work was trained to reconstruct the full physical fields from lim-
ited, incomplete observations, the answer appears promising. In
real-world NWP situations, ensemble prediction data archives
contain valuable information about the nonlinear relationship
between model states and corresponding incomplete observa-
tions, the latter of which can be obtained using a (forward)
observation operator. The deep learning model can be
trained to approximate the inverse of the observation operator,
which can be termed as the “reconstruction” operator.

In our experiments, we intentionally ran the benchmark
simulation at a resolution higher than the forecast model’s
resolution. This configuration simulates the reality that our
forecast model is not perfect, and thus the deep learning train-
ing dataset may be flawed. However, we successfully trained
the deep learning model using a long-term “historical” simu-
lation with the coarse resolution forecast model, which recon-
structs full-coverage observations with high accuracy based
on incomplete observations from the (high-resolution)

(a) (b) (c)

(d)

FIG. 7. The mean RMSE (106 m2 s21) of the last-100-day posterior analysis streamfunction fields for the (a) Dense, (b) Sparse, and
(c) Very-Sparse groups with 80 (blue) or 10 ensemble members (orange). (d) The RMSE time series of the last 100 days for the experi-
ments in the Dense group with different ensemble sizes. Error bars in (a)–(c) indicate plus/minus one standard deviation.
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benchmark simulation. Such reconstruction is still very skill-
ful even when the input observation density is coarsened
but full-resolution reconstruction is intended.

When observation data has the same resolution (T63) as
the forecast model, the analysis streamfunction generated by
assimilating the combination of partial observation (PartObs)
and deep learning reconstruction (MixObs) is more accurate
than the result from assimilating PartObs alone. The deep
learning reconstruction also improves the ensembles’ 1-day
forecast error. When using the full-resolution reconstruction
(MixObsSC and MixObsVSC), the benefits of using mixed
observations do not degrade significantly when observation
data becomes very sparse; in contrast, the analysis generated
by assimilating partially available observations is more sensi-
tive to observation density. The advantage of deep learning
augmentation even extends to small ensemble assimilation,
therefore it has a promising potential in reducing the compu-
tational cost of ensemble DA.

The accuracy of real case applications of DDA will be bot-
tlenecked not only by the capacity of the deep neural networks
but also by the reliability of our NWP models, which provide
the training datasets. The convolutional autoencoder used in
this study can be generalized to three-dimensional datasets by
using three-dimensional convolutional and transposed convo-
lutional layers. Multiple variables can be regarded as multiple
network channels. Though our application is based on the
barotropic vorticity model which has relatively limited sub-
space dimentionality,2 and is therefore not extremely difficult
for deep learning reconstruction, for practical applications, the
specific structure of the deep learning model can be flexible,
and the continuing advancement of deep learning will cer-
tainly provide us with more powerful tools (e.g., Jam et al.
2021; Kang et al. 2021).

The reliability of operational NWP models has been improv-
ing over the decades along with steady advances in data assimi-
lation systems (Blayo et al. 2014; Geer et al. 2018; Pu and
Kalnay 2019). As a result, the quality of training data derived
from historical NWP forecasts and reanalyses is expected to
be adequate for training deep learning models. Therefore, the
practical barrier to realizing DDA’s full potential may be the
large quantity, rather than the quality, of geophysical datasets
because of the expected demanding computational cost. It is
common to use more than ∼10000 samples in training deep
learning models (e.g., Weyn et al. 2020; Ham et al. 2021; Pathak
et al. 2022). Including high-resolution three-dimensional atmo-
spheric state data for such many sample states would make the
computational cost infeasible. The advancement of distributed
deep learning (Dean et al. 2012; Mayer and Jacobsen 2020)
could provide a pathway to operational applications. However,
for research and preliminary testing, it might be desirable to
first focus on a limited region, instead of the global atmosphere.
Another strategy to downsize training datasets might be

coarsening the original datasets to lower horizontal and vertical
resolutions. For example, in the development of FourCastNet,
Pathak et al. (2022) used the European Centre for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis version
5 (ERA5; C3S 2017) data from 1979 to 2015 for model train-
ing, but to make the computational cost affordable, they only
used 6-hourly data on five vertical levels, instead of the full
ERA5 dataset with hourly intervals and on 37 levels. How-
ever, because the original datasets are generated with a high-
resolution model, nonlinear relationships between observation
and model states are still preserved and consistent.

Though not shown in this paper, the same CAE structure
used here has been tested and shown to be capable of mapping
a spatially incomplete vorticity field to its corresponding full
streamfunction field with accuracy comparable to the stream-
function-mapping CAE we discussed. Because remote sensing
data cannot be reconstructed in their unobservable regions,
such mapping between variables will be required for more real-
istic investigations. In the future, we will investigate the applica-
tion of deep learning augmentation to more realistic DA cases.
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APPENDIX

Identical Resolution Model Experiments

Here we document some experiment results when the truth
and forecast model resolutions are identical. Figure A1 shows
the forecast and analysis RMSE of the ensemble means of
the three assimilation experiments (FullObs, PartObs, and
MixObs) against the truth data in the case of using identical
truth and forecast model resolution of 96 3 192 (T63). This
shows that FullObs outperforms MixObs and the PartObs in
both the analysis and forecast results. The MixObs analysis
error is comparable with the PartObs. However, MixObs
forecast RMSE is still slightly better than the PartObs in
most cases. We can conclude that even though the analysis
results are not improved substantially, we can get notably
more accurate forecast results with complete observations
from the CAE reconstruction.

Figure A2 compares the analysis and forecast results of the
ensemble means of the Very-Sparse Observations (PartObsVS),
which has coarsened 1/16 of data from the PartObs and two

2 Empirical orthogonal function (EOF) analysis suggests that
the first 30 EOF modes can explain 78% of the variance in the
streamfunction field, and the first 100 EOF modes explain 98% of
total variance.
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mixed observations (MixObsVSC and MixObsVSS) recon-
structed based on the PartObsVS with the same true and
forecast model resolution (T63). The two CAE-augmented
mixed observations exhibit lower analysis RMSE than the
PartObs analysis during almost all the cycling periods. It
seems that the MixObsVSC shows slightly lower analysis
RMSE than MixObsVSS which is similar to the result of the
sparse group in Fig. 6. When we focus on the forecast

RMSE of the three kinds of observations, the mixed obser-
vations showed lower prior RMSE than the PartObs, same
as in Fig. 4d.

Therefore, we demonstrate that in the case of using an
identical truth and forecast model resolution, the assimila-
tion can still benefit from the CAE reconstruction, and the
advantages are substantial in the case of having very sparse
observations.

FIG. A2. The root-mean-square error (RMSE) (106 m2 s21) of the prior ensemble (forecast) mean (dashed lines)
and posterior ensemble (analysis) mean (solid lines) during the assimilation cycles (60 days) for the PartObsVS (blue
lines), MixObsVSC (red lines), and the MixObsVSS (green lines) experiments. A total of 80 ensemble members are
used in each experiment.

FIG. A1. The root-mean-square error (RMSE) (106 m2 s21) of the prior ensemble (forecast) mean (dashed lines)
and posterior ensemble (analysis) mean (solid lines) during the assimilation cycles (60 days) for the FullObs (red
lines), PartObs (blue lines), and the MixObs (green lines) experiments. A total of 80 ensemble members are used in
each experiment.
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