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Abstract The projection of extreme convective precipitation by global climate models (GCM) exhibits
significant uncertainty due to coarse resolutions. Direct dynamical downscaling (DDD) of regional climate
at kilometer-scale resolutions provides valuable insight into extreme precipitation changes, but its
computational expense is formidable. Here we document the effectiveness of machine learning to enable
smart dynamical downscaling (SDD), which selects a small subset of GCM data to conduct downscaling.
Trained with data for three subtropical/tropical regions, convolutional neural networks (CNNs) retained
92% to 98% of extreme precipitation events (rain intensity higher than the 99th percentile) while filtering
out 88% to 95% of circulation data. When applied to reanalysis data sets differing from training data, the
CNNs' skill in retaining extremes decreases modestly in subtropical regions but sharply in the deep tropics.
Nonetheless, one of the CNNs can still retain 62% of all extreme events in the deep tropical region in the
worst case.

Plain Language Summary Climate scientists use supercomputers to simulate the climate and
predict how it may change under global warming. Extreme precipitation, which can disrupt society by
causing disasters like floods and landslides, is of great interest in climate studies. However, replicating
severe rainstorms on a supercomputer, especially the storms in tropical and subtropical areas, is not easy.
This is because those rainstorms often contain fine-scale details that cannot be represented confidently
without extensive computational resources. If we use computationally affordable computer models to
simulate those rainstorms, we obtain results with substantial uncertainties. If we use computationally
expensive ones, we cannot simulate many scenarios and cannot be confident about the results. The power
of machine learning in pattern recognition is here used to help modelers use their computational resources
more efficiently. Instead of simulating all kinds of weather events, including unimportant ones, at high
resolutions, we use machine learning algorithms to search coarse resolution climate data for those
large-scale weather patterns that are more likely to cause severe rainstorms. Then modelers can make
more efficient use of supercomputing resources by simulating severe weather events only and advance our
understanding of them.

1. Introduction
Extreme precipitation events often disrupt society by causing disasters such as floods and landslides. Thus,
predicting the response of precipitation extremes to global warming is crucial for our adaptation to climate
change. Climate models agree well with each other on the potential response of extreme extratropical pre-
cipitation to global warming, but their results for subtropical and tropical extremes diverge (O'Gorman &
Schneider, 2009). Predicting such changes is not straightforward, because the performance of numerical
simulation of extreme precipitation is sensitive to model resolution (Li et al., 2018; Van Der Wiel et al., 2016),
and grid spacings of current-generation climate models are still at coarse ∼1◦ resolutions. Previous stud-
ies have demonstrated that to accurately predict future changes in extreme precipitation events, especially
those associated with severe convection, it is necessary to resolve local storm dynamics with kilometer-scale
grid spacings (Kendon et al., 2014, 2017). Such a high resolution is necessary not only because of the small
spatial scale of convective cells but also because the essential roles played by the interaction between con-
vection and large-scale dynamics, air-sea coupling, and topographic forcing in determining the intensity of
extreme events (Kendon et al., 2017; Nie et al., 2016; Rainaud et al., 2017).
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Modelers have been attempting to refine global climate models' (GCMs) resolution, but the current highest
resolution is only ∼25 km (Haarsma et al., 2016). A direct dynamical downscaling (DDD) approach has been
adopted in the regional climate simulations at convection-permitting resolutions. Valuable findings have
been obtained due to improved representation of fine-scale processes, but DDD at the convection-permitting
resolution has a very high demand on computational resources (Prein et al., 2015).

Is there a way to avoid the expensive computational cost of long-term DDD but still allow a
convection-permitting resolution? This question is the core problem we want to address in this study. When
our concern is not the mean climate but instead a special kind of weather (e.g., extreme precipitation), we
can save a tremendous amount of computational resources if we do not have to perform the DDD for every
day of an extended period. In this study, we harness machine learning's power to fulfill the goal of select-
ing a small subset of GCM data for the dynamic downscaling of extreme precipitation events. We call this
strategy smart dynamical downscaling (SDD).

Machine learning has been increasingly used in geoscience in recent years. In the atmospheric science
community, it has applied to real-time nowcasting (Han et al., 2017; McGovern et al., 2017), physical param-
eterization (Brenowitz & Bretherton, 2019; Gagne et al., 2020), and weather forecasting (Chattopadhyay
et al., 2020; Weyn et al., 2019). Previous authors have documented machine learning's potential to iden-
tify synoptic-scale patterns associated with extreme rainfall in the extratropics (Agel et al., 2018; Conticello
et al., 2018; Knighton et al., 2019). The current study differs from previous ones in that we intentionally
chose subtropical and tropical regions for potential applications on convective rainfall, which might be more
challenging to capture based on large-scale circulation. Also, because the purpose of this study is to eval-
uate the potential of SDD, we used machine learning for the classification problem of circulation patterns,
instead of attempting to predict the exact precipitation amount like other statistical downscaling studies
(e.g., Sachindra et al., 2018).

We evaluated three machine learning models, a dual support vector machine (SVM) model, an 8-layer
deep convolutional neural network (CNN), and a sophisticated 58-layer deep CNN, in classifying circula-
tion patterns responsible for 6-hourly precipitation extremes. The performance of these machine learning
models with increasing complexity is documented, and we found the deep CNN with a structure of
intermediate-level complexity appears to suffice for SDD.

2. Data and Methods
2.1. Reanalysis and Satellite Data

We train machine learning models with reanalysis data of circulation and satellite data of 6-hourly precipi-
tation. Our study focused on the areas surrounding three Asian cities, Hong Kong (HK), Manila (MN), and
Singapore (SG), where extreme rainfall is often related to intense convection, to contrast applicability of the
methodology developed here for subtropical and tropical climate.

The precipitation data we used are the final precipitation, Level 3 data of the Integrated Multi-satellitE
Retrievals for Global Precipitation Measurement (GPM IMERG; Huffman et al., 2019). This data set have
0.1◦ spatial resolution and 30-min temporal resolution originally. We used the data set between the period
of June 2000 to May 2019. Because the reanalysis data have a 6-hr temporal resolution, we average the
original data in time to get the mean precipitation rate in 6-hr intervals. We also used area averaging of the
precipitation data to coarse-grain the data onto a 0.5◦ × 0.5◦ grid to ignore sporadic events that affect only a
small area.

Multiple reanalysis data sets were used in the training and evaluation of machine learning models. For the
SVMs' training, we use the NCEP/NCAR (National Centers for Environmental Prediction/National Center
for Atmospheric Research) Global Reanalysis Products (Kalnay et al., 1996) to represent the state of the
atmospheric circulation. This data set has 2.5◦ × 2.5◦ horizontal resolution. We use data on eight pres-
sure levels between 1,000 to 300 hPa. The variables we chose to depict the large-scale circulation include
7 three-dimensional variables: geopotential height, relative humidity, temperature, u and v components of
horizontal wind, vertical (pressure) velocity, and vorticity, in addition to three single-level variables—surface
pressure, tropopause pressure, and precipitable water. The temporal resolution of the reanalysis data is 6 hr.
The circulation variables were normalized with the mean and standard deviation at each level. The precipita-
tion data from reanalysis were not used because they represent precipitation from large-scale circulation and
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are significantly biased. Supporting information Figure S1 shows that precipitation data from the reanalysis
data suggest inaccurate timing and intensities compared with GPM observation.

For the training of deep neural networks (RaNet and RxNet described below), we used the NCEP final
(FNL) operational analysis data on 1◦ × 1◦ grids (NCEP/NWS/NOAA, 2000). The NCEP/NCAR reanalysis
data were not used for the training of CNNs, because its coarse resolution hampers the use of multiple
convolutional layers. To reduce the computational cost in training the CNNs, we only used five variables
(geopotential height, temperature, relative humidity, and u and v components of wind) on six pressure levels
(300, 500, 700, 850, 925, and 1,000 hPa).

Finally, to evaluate the sensitivity of the trained neural networks to potential model biases in climate simu-
lations, we evaluated the performance of the FNL-trained neural networks with another two reanalysis data
sets, ERA5 (Copernicus Climate Change Service, 2017) and JRA-55 (Japan Meteorological Agency, 2013).
Those data were spline interpolated onto 1◦ × 1◦ grid and used by the FNL-trained CNNs to make
predictions.

2.2. SVM

An SVM is a machine learning model for classification problems (Cristianini & Shawe-Taylor, 2000). At its
core, an SVM finds a hyperplane in the feature space of data and separate points in the feature space into
different groups. The hyperplane in feature space is defined as the set of points x satisfying

w · x + b = 0. (1)

The vector w and scalar b for the best hyperplane are determined by an optimization procedure that max-
imizes the margin between two classes in the feature space. For a linearly separable problem, w and b are
entirely determined by those sample points that are closest to the best hyperplane. Those sample points are
called support vectors. When data are not linearly separable, one can use a soft margin technique to allow
a small number of misclassified instances.

Furthermore, in nonlinear classification problems, it is common to use a kernel function to replace dot prod-
uct for operating the optimization algorithm in a transformed feature space implicitly. In our application,
we used the Gaussian radial basis function:

G(xi, x𝑗) = exp

(
−
||xi − x𝑗 ||2

2𝜎2

)
, (2)

where
√

2𝜎 is called kernel scale. Besides 𝜎, the other hyperparameter for training an SVM is the box
constraint which appears in the soft margin formula and determines the tolerance level of misclassification.

An SVM takes the NCEP/NCAR reanalysis data in the 15◦ × 15◦ square region centered at one of the three
cities as input. Each time slice is categorized as producing “significant rain” or “no significant rain” (with
the 30th percentile of rain rate as the threshold), “light rain” or “heavy rain” (with the 60th, 70th, or 80th
percentile as the threshold, see section 3.1), based on next-6-hr precipitation in the 0.5◦ × 0.5◦ cell centered
at the same city. The SVMs were trained to classify the large-scale circulation patterns accordingly.

MATLAB R2019b was used to train SVMs. The SVMs were trained using Bayesian optimization to find out
the best hyperparameters. Their performance was evaluated with tenfold cross validation, in which the input
data set was partitioned into 10 subsets. Each subset was sequentially used as the validation set, while the
other nine were used for training. Performance metrics are based on 10-time averages.

2.3. CNN

In its essence, a neural network transforms the signal from one layer of neurons to the next through a linear
transformation and the use of a nonlinear activation function:

z[k] = W[k]a[k−1] + b[k] , a[k] = g[k](z[k]), (3)

where a[k] is the activation of Layer k,W[k] is a weight matrix, and b[k] is a bias vector. g[k] is a nonlinear
activation function. For Layer 0, the activation a[0] is the vector of input data x. A fully connected layer in
a deep neural network connects every neuron in the previous layer to every neuron in the current layer. A
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Figure 1. Structure of (a) RaNet and (b) RxNet. RaNet uses three-dimensional filters in the convolutional layers and leaky ReLU activation for all layers; the
first two convolutional layers are followed by batch normalization layers which are not shown. RxNet uses two-dimensional filters in its regular convolution
and channel-wise separable convolution operations and used the ReLU activation function for all layers; all convolutional layers are followed by batch
normalization layers which are not shown. Blue-font values before @ indicate the number of channels of each layer. The expression after @ indicates the
size of activation arrays of a channel. The expression in brackets indicates the size of filters used by convolutional layers.

convolutional layer, by contrast, has multiple filters, which are used to convolve a subblock of the activation
data from the previous layer and connect that subset of neurons to a neuron in the current layer.

Two CNN structures are tested in this study (Figure 1). They are motivated by the AlexNet (Krizhevsky
et al., 2012) and Xception (Chollet, 2017) models, respectively, which showed excellent performance in com-
puter vision competitions. This first CNN used in this study is named as RaNet (motivated by AlexNet,
Figure 1a). It has three convolution layers and five fully connected layers. Differing from the original
AlexNet, RaNet uses three-dimensional filters in its convolutional layers; thus, its input layer has five chan-
nels (variables). By contrast, RxNet (motivated by Xception, Figure 1b) treats the data on each pressure
level as one individual variable; thus, its input layer has 30 channels (5 variables × 6 levels). Such a design
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of RxNet is used for closely following the original Xception model, which was applied to two-dimensional
images. RxNet is 58-layer deep and includes multiple residual connections.

When training the CNNs, we included the precipitation data for about 40 to 50 additional 0.5◦ × 0.5◦ grid
cells surrounding each of those three cities (and the accompanying circulation data) to obtain more samples,
which helps prevent overfitting. The extent of the surrounding areas was determined by applying the trained
SVMs to new nearby grid cells and evaluating the performance of the SVMs. Relatively high performance
suggests the weather patterns governing precipitation at the new locations are similar to those at the original
training location. Thus, it is appropriate to include the new grid cells' data to increase the total sample size.
The exact extent of the selected HK, MN, and SG regions is shown in supporting information Figure S2, with
the selection threshold provided in the caption of Figure S2.

The 6-hourly precipitation data of each 0.5◦ × 0.5◦ cell within a selected region are used to categorize the cor-
responding time and location as producing “extreme rain” or “nonextreme rain” (with the 90th percentile
of rain rate as the threshold). The input data for the neural networks are the FNL data spline interpolated
onto 12◦ × 12◦ square regions, which are centered at each of the 0.5◦ × 0.5◦ rain data cells and have 1◦ × 1◦

resolution (supporting information Figure S3). Input data for RaNet are scaled perturbations. We define
base-state profiles of geopotential height and temperature as their climatological means and the base-state
profiles for u, v, and relative humidity as 0. The deviations of variables from base states are defined as per-
turbations and then scaled by their root-mean-square amplitudes. Because RxNet treats the data on each
pressure level as separate variables, input data of each channel for RxNet are rescaled to be in the range
of −1 to 1 using minimum and maximum values. When the FNL-trained CNNs are applied to ERA5 and
JRA-55 data sets, leading-order model “biases” in these two data sets were removed by adjusting their mean
and root-mean-square perturbation amplitude at each pressure level to be the same as FNL data.

For these two CNNs, 60% of the FNL data were used to train the models, and 20% used for validation, which
helped decide if early stopping was needed during training. The other 20% data were held out as a test data
set for evaluating trained models' performance. The 70-15-15 partitioning of the train-validation-test data
sets was also evaluated and did not cause a significant difference in results.

The two CNNs were trained to partition data into the categories of “extreme” and “nonextreme” rain, by
iterating to minimize the weighted cross-entropy loss function:

L = − 1
N

N∑
i=1

K∑
𝑗=1

w𝑗Ti𝑗 log(Yi𝑗) . (4)

T is training targets, Y is predicted probability, N is the number of instances, K is the number of classes,
and w is the weighting factor. Instead of an unweighted loss function, this weighted loss function was used
because the number of nonextreme events is much larger than that of extremes. The weighting factor w is
set to 0.95 for extreme events and 0.05 for nonextreme events. These weighting factors are determined by
the approximate ratio of the number of events in the two categories. Therefore, predicting an extreme event
wrong causes a much larger increase in the loss function than doing the same to a nonextreme event.

RaNet and RxNet were optimized using the Adam (adaptive moment estimation) optimizer in MATLAB
through 30 epochs of iteration and with a learning rate of 1 × 10−4. Training them with more iteration cycles
can increase their accuracy and precision but leads to deterioration in the recall, which suggests overfitting
and is not favorable for retaining extreme events. Because of the high computational expense in training
CNNs, we did not apply the Bayesian optimization here. Instead, the learning rate, CNN structures, and the
number of training epochs were determined empirically through several rounds of experiments.

2.4. Performance Metrics

In the training of SVMs and CNNs, algorithms try to achieve the highest classification accuracy. However,
because extreme events are only a small fraction of the data, accuracy of trained models is always intuitively
high. Thus, in our discussion, we report the performance of trained models primarily with precision and
recall. Precision quantifies the skill of a trained model in filtering out irrelevant circulation patterns, whereas
recall quantifies how well the relevant patterns are retained. Specifically,

PM
𝑦
=

|{r > r𝑦} ∩ {r′ > r𝑦}||{r′ > r𝑦}| , (5)

SHI 5 of 10



Geophysical Research Letters 10.1029/2020GL090309

Figure 2. Precision (a–c) and recall (d–f) of the trained SVMs. (a) and (d) are the SVMs for HK, (b) and (e) for MN, (c) and (f) for SG. The SVMs were trained for
the thresholds indicated below the horizontal axis, but their performance is evaluated against the training criteria and the 90th and 99th percentiles of rain rates.

RM
𝑦
=

|{r > r𝑦} ∩ {r′ > r𝑦}||{r > r𝑦}| , (6)

where PM
𝑦

and RM
𝑦

are precision and recall of the model M when cases with precipitation rates greater than
the yth percentile, ry, are labeled as positive. ry may differ from the actual threshold used in labeling data
when training M. {r > ry} represents the set of instances for which real rain rate (r) exceeds ry and {r′ > ry} is
the set of instances for which the model M predicts rain rate (r′) exceeding ry. r′ was not computed by the
machine learning models explicitly, but rather, the condition, r′ > ry, was judged by the model M.

3. Results
3.1. Dual-SVM Model

We trained a pair of SVMs to select instances for extreme events. The first SVM (SVM1) tells whether
the circulation at a time can produce “significant” rainfall or not, with the 30th percentile of rain rate as
the threshold. The subset of circulation data, which SVM1 predicts to produce significant rain, are then
adopted by the second SVM (SVM2), which uses a higher percentile (60th, 70th, or 80th) as its threshold for
“extremes.” We found that this dual-SVM strategy can yield higher precision and recall than using a single
SVM to directly predict “extremes.”

Figure 2 shows the performance of the dual-SVM model trained with the data for the three cities, HK, MN,
and SG. The precision of SVM1 for its training criteria, PSVM1

30 , is around 0.7, and the recall of SVM1 for
its training criteria, RSVM1

30 , is between 0.48 and 0.59. These recall values are not very high. However, if we
target to retrieve precipitation event with rain rate higher than the 90th and 99th percentiles, we can find
that the corresponding recall, RSVM1

90 and RSVM1
99 , is between 0.82 and 0.92 for HK and MN and between 0.69

and 0.79 for SG. It should be noted that because we did not include rain rate lower than 0.05 mm hr−1 in
calculating the percentiles, SVM1 eliminates much more than 30% circulation data from all time slices.
Precipitation rates in HK, MN, and SG exceed the corresponding 30th percentiles only in 14.5%, 28.9%, and
29.4%, respectively, of time slices of the 19 years (not shown).
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Figure 2 also shows the performance of SVM2 for training criteria and real extreme events defined by the
90th and 99th percentiles. For SG, we could not obtain a converged solution when the training criterion was
set as the 80th percentile. Therefore, it is likely that those circulation patterns, responsible for the extreme
events defined with the 80th percentile, are inseparable from others by an SVM.

The precision of SVM2 for the 90th and 99th percentiles (red and yellow bars in Figures 2a–2c) increases as
the training criteria increase to become close to the evaluation criteria. However, those values are relatively
low because SVM2 was trained with different criteria (e.g., the 70th percentile). The recall of SVM2 decreases
as the training criteria increases. A higher training threshold means that we can filter out more “irrelevant”
instances. However, it also increases our chance of losing actual extreme events due to misclassification.
Based on Figure 2, the SVM2 trained with the 70th percentile of rain rate appears to be the most balanced
model for applications. If we target to retrieve extreme events defined by the 99th percentile in the selection,
the SVM1 and the SVM2 trained with the 70th percentile can yield combined recall (product of the recall of
SVM1 and SVM2) of RSVM1

99 RSVM2
99 = 0.81, 0.79, and0.31, for HK, MN, and SG, respectively.

The dual-SVM model's unsatisfactory performance for SG data suggests that we cannot obtain a very reliable
subset of data if we want to study extreme rainfall in the deep tropics with SVMs. Moreover, because we can
only use the 70th percentile of rain rate in the training of SVM2, we still need to “waste” a substantial fraction
of our computation to ensure the SVMs keep the most extreme events. Can we overcome these difficulties
with deep neural networks?

3.2. CNNs

The performance of RaNet and RxNet is shown in Table 1. For the test set of FNL data, the precision of the
two CNNs, PRaNet

90 and PRxNet
90 , is between 0.23 and 0.33, which is not very impressive, but their recall, RRaNet

90
and RRxNet

90 , is high, between 0.75 and 0.92. When evaluated for the 99th percentile, the recall of the CNNs,
RRaNet

99 and RRxNet
99 , reaches 0.93 to 0.98. Those high values contrast with the much lower recall values of

the dual-SVM models, especially for the SG region. Therefore, the deep neural networks RaNet and RxNet
are indeed more powerful in recognizing large-scale patterns responsible for extreme events. The relatively
low precision values partially result from the weighted cross-entropy loss, which ensures the high values of
recall. We trained RaNet with unweighted cross-entropy loss. It exhibits a precision of 0.38–0.49, and recall
(for the 90th percentile) drops to 0.58–0.67, leading to the misclassification of many extreme events.

Different climate models potentially have their intrinsic biases—can the CNNs trained with FNL data
perform well when applied to climate simulation data? To evaluate the tolerance of RaNet and RxNet
to potential GCM biases, we apply them to another two reanalysis data sets, ERA5 and JRA-55, to com-
pute the performance metrics of the FNL-trained CNNs (while still using the GPM precipitation to label
instances). Different reanalysis data sets are known to represent some parts of the general circulation dif-
ferently (Kossin, 2015). Although we have adjusted the mean and amplitude of ERA5 and JRA-55 data
(section 2.1) to correct leading order biases, significant changes in the performance of trained CNNs can still
be found when applied to the ERA5 and JRA-55 data.

In Table 1, application of the FNL-trained CNNs to ERA5 data does not result in a large decrease in the
accuracy and precision but leads to a sharp drop in the recall, especially for the SG region. The recall cor-
responding to the training criterion (90th percentile) for the SG region is around 0.76 for the FNL test data
set but drops to 0.56 and 0.43 for RaNet and RxNet, respectively, for the ERA5 data. When considering the
99th percentile, RRaNet

99 and RRxNet
99 are higher than 0.80 for the HK and MN regions with the ERA5 data but

are only 0.74 and 0.64, respectively, for the SG region.

The JRA-55 data set appears to differ from the FNL data even more than the ERA5 data. Recall values of
RaNet and RxNet, when applied to the JRA-55 data, become even lower than those for ERA5. For the HK
region, the recall RRaNet

99 and RRxNet
99 are 0.90 and 0.80, respectively, with the JRA-55 data, which are still

satisfactory. However for the SG region, RRaNet
99 and RRxNet

99 are only 0.62 and 0.47, respectively, with the JRA-55
data. These results suggest that if the CNNs are trained with one circulation data set and applied to the deep
tropics in climate simulations, they may not capture all the circulation patterns in climate models that can
generate extreme events when dynamically downscaled.

Overall, RxNet exhibits higher accuracy and precision than RaNet for all three regions. However, RaNet
exhibits higher recall values and appears to be more resilient to potential model biases. For example, RRaNet

99
is consistently higher than RRxNet

99 by more than 0.10 in all three regions. However, the relatively higher recall
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Table 1
Performance Metrics of RaNet and RxNet

HK Region MN Region SG Region
RaNet RxNet RaNet RxNet RaNet RxNet

accuracy FNL 0.936 0.961 0.897 0.933 0.900 0.920
ERA5 0.948 0.964 0.904 0.938 0.905 0.931
JRA-55 0.950 0.957 0.907 0.931 0.883 0.926

precision FNL 0.238 0.331 0.229 0.307 0.230 0.274
ERA5 0.257 0.326 0.224 0.292 0.201 0.238
JRA-55 0.259 0.276 0.217 0.241 0.148 0.180

recall FNL 0.921 0.858 0.832 0.748 0.770 0.749
ERA5 0.777 0.663 0.725 0.553 0.557 0.428
JRA-55 0.738 0.645 0.650 0.462 0.475 0.299

recall (99%) FNL 0.985 0.983 0.955 0.935 0.927 0.936
ERA5 0.927 0.843 0.904 0.800 0.742 0.643
JRA-55 0.901 0.798 0.864 0.695 0.622 0.465

retention FNL 0.082 0.055 0.126 0.084 0.120 0.098
ERA5 0.064 0.043 0.112 0.065 0.099 0.064
JRA-55 0.060 0.049 0.104 0.066 0.115 0.059

Note. Three data sets, FNL, ERA5, and JRA-55, were used to evaluate the models. For FNL, only the
test data set (20% of all) was used to evaluate the performance of trained models, whereas, for ERA5
and JRA-55, entire data sets were used. The rows of “precision” and “recall” are computed for the
training threshold, the 90th percentile values. The rows of “recall (99%)” is the recall when the trained
models are evaluated for the 99th percentile values. “retention” refers to the fraction of data retained
(as relevant to extreme events) by the trained models.

comes with a price in computational cost; that is, less “irrelevant” data can be filtered out if the recall needs
to be high. For example, when using ERA5 data for the MN region, RaNet retains twice as much data as
RxNet.

4. Discussion and Summary
In this study, we demonstrated that the SDD of extreme rainfall is viable through deep neural networks,
though the reliability of this method depends on climate regimes. For regions outside the deep tropics
(HK and MN), this methodology appears to be promising. The trained CNNs performed well, even when
different reanalysis data sets were used to evaluate their performance. In the HK region, for example, 92%
to 96% of circulation data can be filtered out as irrelevant patterns for extreme events. However, for the deep
tropics (SG region), the CNNs' skill in retaining extremes significantly deteriorates when applied to differ-
ent reanalysis data sets. For instance, RxNet has a recall of 0.94 for the 99th percentile extreme events for
FNL data but drops to 0.47 for JRA-55 data.

From simple SVMs to sophisticated CNNs, the model performance is always worse for the SG region than the
other two regions. We speculate that this is because the link between large-scale circulation and local precipi-
tation in the deep tropics is just not as strong as those in subtropics. k-medoid clustering analysis (supporting
information Figures S4–S6) suggests that extreme precipitation events in the HK region are typically asso-
ciated with warm-sector convection, frontal rainfall, and tropical cyclones (Figure S4), of which the first
type comprises the majority (Wu et al., 2020). Those weather patterns have distinct large-scale features. In
contrast, extreme precipitation appears to be connected with squall lines and cold pools for the SG region
(Porson et al., 2019), which exhibit significant variability at smaller grid scales (Figure S6). It is probably not
surprising that fitting small-scale features is more complicated than fitting large-scale ones.

Therefore, the SDD of extreme precipitation in the deep tropics appears to be challenging. One could use a
threshold that is even lower than the 90th percentile to train CNNs to increase the recall for the 99th per-
centile extreme events. However, such a strategy may not always be desirable because it increases the recall
by sacrificing precision, thereby increasing the computational cost of downscaling simulations. It is also
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possible to include multiple reanalysis data when training CNNs to alleviate the problem of low tolerance
to potential model biases. Lastly, using a model structure with an intermediate level of sophistication, like
the RaNet here, may also be beneficial.

In subtropical regions, the potential of advanced deep neural networks, such as RxNet here, can be fully
exploited to reduce computational expense while confidently retaining most of the circulation patterns caus-
ing extreme rainfall. In our study, the recall RRxNet

99 ≥ 0.80 for the HK region with all circulation data sets.
The next step for our research is to apply deep neural networks to SDD of climate simulations and explore
the response of extreme rainfall to global warming.

Data Availability Statement

FNL and JRA-55 data were obtained from the Research Data Archive at the National Center for Atmo-
spheric Research, Computational and Information Systems Laboratory (https://rda.ucar.edu/). The ERA5
data set was provided through Copernicus Climate Change Service Climate Data Store (https://cds.climate.
copernicus.eu/) The GPM IMERG precipitation data were provided by the Goddard Earth Sciences Data
and Information Services Center (GES DISC) (https://doi.org/10.5067/gpm/imerg/3b-hh/06).
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