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ABSTRACT: The development of machine learning (ML) techniques enables data-driven parameterizations, which have
been investigated in many recent studies. Some investigations suggest that a priori-trained ML models exhibit satisfying ac-
curacy during training but poor performance when coupled to dynamical cores and tested. Here we use the evolution of
the barotropic vorticity equation (BVE) with periodically reinforced shear instability as a prototype problem to develop
and evaluate a model-consistent training strategy, which employs a numerical solver supporting automatic differentiation
and includes the solver in the loss function for training ML-based subgrid-scale (SGS) turbulence models. This approach
enables the interaction between the dynamical core and the ML-based parameterization during the model training phase.
The BVE model was run at low, high, and ultrahigh (truth) resolutions. Our training dataset contains only a short period
of coarsened high-resolution simulations. However, given initial conditions long after the training dataset time, the trained
SGS model can still significantly increase the effective lead time of the BVE model running at the low resolution by up to
50% relative to the BVE simulation without an SGS model. We also tested using a covariance matrix to normalize the loss
function and found it can notably boost the performance of the ML parameterization. The SGS model’s performance is
further improved by conducting transfer learning using a limited number of discontinuous observations, increasing the
forecast lead-time improvement to 73%. This study demonstrates a potential pathway to using machine learning to en-
hance the prediction skills of our climate and weather models.

SIGNIFICANCE STATEMENT: Numerical weather prediction is performed at limited resolution for computational
feasibility, and the schemes to estimate unresolved processes are called parameterization. We propose a strategy to de-
velop better deep learning–based parameterization in which an automatic differentiable numerical solver is em-
ployed as the dynamic core and interacts with the parameterization scheme during its training. Such a numerical
solver enables consistent deep learning, because the parameterization is trained with a direct target of making the
numerical model (dynamic core and parameterization together) forecast match observations as much as possible.
We demonstrate the feasibility and effectiveness of such a strategy using a surrogate model and advocate that such
machine learning–enabled numerical models provide a promising pathway to developing next-generation weather
forecast and climate models.

KEYWORDS: Barotropic flows; Numerical weather prediction/forecasting; Deep learning

1. Introduction

Many of the physical processes involved in weather or cli-
mate simulations occur at spatial scales smaller than the
grid spacings of numerical models. These processes, such as
radiative transfer, cumulus convection, and turbulent mix-
ing, can drive heat and momentum budgets and therefore
are critical to a numerical model’s predicting skill (Bauer
et al. 2015). Because explicitly resolving those physical pro-
cesses are computationally infeasible, we need parameterization
schemes that approximate subgrid-scale physical processes us-
ing resolvable variables and incorporate the resulting tendencies
into the numerical integration. Traditional turbulence parame-
terization models are developed based on some heuristic

assumptions, whose quality and reliability are in question
(Chung and Matheou 2014). For example, the eddy viscos-
ity assumption postulates that resolved scalar variances and
kinetic energy are always transferred to smaller unresolved
scales, but in reality, backscatter can occur at all scales to
transfer variance and energy in the opposite direction (Chow
et al. 2019). Second, when developing traditional parameteri-
zation schemes, the processes to be parameterized are some-
times evaluated independently without allowing a scheme to
interact with other processes or the dynamical core (Donahue
and Caldwell 2018). Such an artificial separation is also a source
of numerical errors and uncertainties (Gross et al. 2018).

In recent years, the development of deep learning (DL) has
opened upmore opportunities for weather and climate research.
Some efforts weremade to investigate the feasibility of replacing
the entire numericalmodel with amachine learning (ML)model.
For example, MetNet-2, a large-context neural network, outper-
formed the state-of-the-art, physics-based High-Resolution En-
semble Forecast (HREF) for up to 12 h of lead time in terms of
precipitation forecasting (Espeholt et al. 2022). However, for
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short andmedium range and climate change time scales, in which
physical principles should bewell represented, pureMLmethods
still fall behind numerical models due to a lack of physical consis-
tency (Weyn et al. 2019). Therefore, using DL methods to aug-
ment numerical models is seemingly more attractive and of
greater potential for now.

Deep learning–based parameterization is one such application
and has gained much attention recently. Deep learning parame-
terizations can be developed in an a priori setting, that is, learn-
ing the map between resolved-scale variables and the tendencies
due to subgrid-scale processes directly from training targets and
inputs computed from high-resolution benchmark simulations.
This approach has been applied to improve the representation
of turbulent fluxes in the surface layer (Leufen and Schädler
2019), gravity wave drag (Chantry et al. 2021), moist processes,
and a collection of subgrid-scale processes (Gentine et al. 2018;
Brenowitz et al. 2020). Those schemes performed well when
evaluated offline; however, in online testing, when they are in-
corporated into numerical models, there are some issues, such
as numerical instability and mean state drifting (Brenowitz et al.
2020) and violation of conservation laws (Gentine et al. 2018).
Enforcing physical constraints in DL architecture can improve
this situation (Beucler et al. 2021); however, those constraints
can trigger model instabilities in some cases (Chantry et al.
2021). Overall, a priori training strategy suffers from a physics–
dynamics decoupling problem like traditional parameterization.
This inconsistent behavior of offline-trained DL models under-
lines the importance of appropriately incorporating the interac-
tion between DL parameterizations and resolvable physics,
dynamical core, and physical principles.

Differentiable programming is one of the potential solutions
to make DL parameterizations more tightly coupled to their
hosting dynamical core by incorporating the gradient of a nu-
merical solver into back propagation and enabling the gradient-
based optimization of the algorithm with DL parameterizations
and the dynamical core as a whole (Baydin et al. 2018). Um
et al. (2020) developed such a framework using TensorFlow for
DL training and FFlow for a differentiable partial differentiable
equations solver. Kochkov et al. (2021) further integrate the
DL models and the numerical method in a “JAX” framework,
which supports automatically differentiating native Python and
NumPy functions and accelerates them on GPUs or TPUs
(Bradbury et al. 2018). The latter feature further accelerates the
dynamical core. Kochkov et al. (2021) demonstrated that their
learned interpolation method, a DL-based numerical integra-
tion approach, takes less time than traditional numerical meth-
ods but exhibits the same level of accuracy and numerical
stability, suggesting a promising future of applying hybrid DL-
differentiable dynamical core in NWP.

However, from Kochkov et al. (2021), it is unclear whether
the advantages of DL-based parameterization can be con-
verted to a significant extension of the effective lead time of
NWP. Because they used the Kolmogorov flow for their ex-
periments, the flow is highly turbulent and has a limited pre-
dictable range. Different from the intensively turbulent
Kolmogorov flow, the real atmosphere is more of a mixture of
geostrophic turbulence and waves (Vallis 2017) and exhibits
quasi-periodic behaviors such as the Madden–Julian oscillation

(Zhang 2005) and baroclinic annular mode (Thompson and
Barnes 2014). We design a new case with better predictabil-
ity than the Kolmogorov flow but which also contains an in-
stability mechanism that is periodically activated. We will
investigate whether the DL training with a differentiable dy-
namical core can significantly extend the effective forecast
range in this case.

The advantage of using high-resolution simulations for DL
training with automatic differentiation is that we can have spa-
tially dense data and make the time interval between reference
states relatively short, thus reducing the difficulty of training.
To extend the lead time of effective prediction, naïvely, we
want to include longer segments of high-resolution simulation
data in the training of DL-based parameterization. However,
this can become computationally expensive when many consec-
utive steps from the high-resolution benchmark simulation are
included. In addition, high-resolution simulations are different
from nature and may become unreliable for long-term predic-
tion. With the development of Earth system observation tech-
nologies, we have accumulated a lot of spatiotemporally sparse
observation data. Using these observation data for posttraining
enhancement of a DL parameterization model through transfer
learning appears to be a potentially valuable idea.

This study focuses on studying the strategy of developing
subgrid-scale turbulence parameterization with DL models,
which are coupled with a differentiable dynamical core during
model training. The first issue we want to investigate is the
performance of the online training approach and some strate-
gies to improve the DL model training with high-resolution
benchmark simulation data. The second question we want to
answer is whether and how we can adjust the pretrained DL
model using limited observational data to achieve better gen-
eralizability or further performance improvement. Below, we
first introduce our idealized case and its predictability issue in
section 2a. DL training data, models, and strategies are intro-
duced in sections 2b and 2c. Results are presented for pre-
training and transfer learning in section 3, followed by a
summary and discussion in section 4.

2. Experimental design and methods

a. An idealized case with BVE

The barotropic vorticity equation (BVE) describes the con-
servation of vorticity in a two-dimensional flow. Here, we de-
sign a new case with better predictability than Kolmogorov
flow by periodically suppressing the forcing to the flow.

1) GOVERNING EQUATIONS

The governing equation for the nondimensionalized BVE
model is

­z

­t
1 J(c, z) 5 2n=4z 1 f , (1)

where z 5 =2c is the vorticity, c is the streamfunction, and
J(c, z) 5 cxzy 2 cyzx 5 yzy 1 uzx is the advection of vorticity.
The two terms on the right-hand side are hyperdiffusion and ex-
ternal forcing, where n is the kinematic viscosity. The forcing
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term determines the characteristics of the flow. In our simula-
tions, the forcing f is periodic in time and y direction. When it is
active, it re-establishes the strong shear zone in the middle of
the domain and provides sufficient conditions for the Kelvin–
Helmholtz instability. The forcing term is configured as a damp-
ing term to the streamfunction. It can be conceptually written
as fc in the following equation,

­c

­t
5 G (c) 1 fc, (2)

where G (c) is the grid-resolved tendency of the streamfunc-
tion and

fc 5 2a(c 2 c0): (3)

Here a21 is the (e folding) damping time scale for the devia-
tion of the streamfunction from the initial condition c0. The
damping coefficient is

a 5
1
2

1 2 cos(pt/5)
2

[ ]4
24
25

1 2 cos(y)
2

[ ]4
1

1
25

{ }
, (4)

which makes the damping term have a period of 10 time units
and be 24 times as large in the middle (y 5 p) as in the north/
south edge (y5 0, 2p).

The initial condition comprises an isolated shear zone in
the middle of the domain, which is a prototype situation of
barotropic instability (Vallis 2017). We created this initial
condition by prescribing the initial vorticity,

z0(x, y) 5
2

32
63

sin p 2
64
63

y

( )
1 e(x, y) 0 # y ,

63
64

p

64
p

1 e(x, y) 63
64

p # y #
65
64

p

2
32
63

sin
64
63

y 2
65
63

p

( )
1 e(x, y) 65

64
p , y # 2p

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

where e is uniformly distributed random noise with amplitude
between60.053 p/64.

The natural atmosphere behaves like waves in the absence
of instability and therefore is of substantial predictability.
However, baroclinic, convective, or other instability may oc-
cur at some time and location, exhibiting quasi-periodic be-
haviors (Zhang 2005; Thompson and Barnes 2014). Figure 1

shows the vorticity field during one cycle of our forcing. When
the forcing is weak, the flow is dominated by larger eddies and
may be less dependent on subgrid-scale process (SGS) parame-
terization. When the forcing is active, the SGS process may be
primarily unresolved in the middle shear zone; there are also re-
gimes where eddies are partially resolved, so they are more like
the gray zones of NWP. This forcing seems to be a better choice
than having a laminar flow or intensively turbulent flow as an
analogy for the actual weather forecast.

2) PREDICTABILITY LIMIT

To further illustrate the different predictability of the
Kolmogorov flow and our BVE setting, we designed a predict-
ability limit test based on different simulation configurations.
We used a pseudospectral spatial differentiation and exponen-
tial time differencing Runge–Kutta fourth-order (ETDRK4)
method for time integration (Kassam and Trefethen 2005). In
this test, we performed four simulation groups, TRUTH, ALT,
HighRes, and LowRes, which were also used later in the ma-
chine learning part. The TRUTH group is a direct numerical
simulation (DNS) run on a 1024 3 1024 grid on a domain of
2p 3 2p. The first 200 time units of the TRUTH run were
discarded, and we collected one snapshot every 2.5 time
units for a total of 100 time slices, which are used as initial
conditions for other groups of simulations. The ALT, mean-
ing alternative truth, is also run on the 1024 3 1024 grid
but carries Fourier-space vorticity each integration step,
whereas the TRUTH group carries physical-space vorticity
states. The only difference between TRUTH and ALT is a
roundoff error, and thus the latter represents an upper limit
on the ability to predict TRUTH with a lower-resolution,
parameterized simulation. The HighRes group runs on
256 3 256 grids, which stands for high-resolution simulations
in NWP, which has a high accuracy for short time periods;
however, it has a high computational cost and a low accuracy
for long time periods. The LowRes group, representing the
operational model in NWP, runs fast on 64 3 64 grids but
needs good SGS models for a breakthrough in the lead time of
prediction.

Figure 2 compares the predictability of the Kolmogorov flow
and the BVE with periodic shear forcing through the root-
mean-square error (RMSE), R2 (with R being the correlation
coefficient), and instantaneous vorticity field for simulations
with one initial condition. The forcing in the Kolmogorov flow
follows the setting in Kochkov et al. (2021), which has a

FIG. 1. Snapshots of vorticity in a DNS of the BVE case at t5 (left) 0, (left center) 202.5, (center) 205.0, (right center) 207.5, and (right)
210.0 time units, with forcing being strongest at 205.0.
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wavenumber-4 structure in the y direction and creates cons-
tant (in time) forcing for zonal wind shears. It is so turbulent
that within about 10 time units, even at the highest accuracy
in our study, rounding errors can develop into significant
differences, making it unsuitable as an analogy for numeri-
cal weather forecasting. In contrast, the BVE with periodic
forcing has better predictability with slower error growth
and correlation decreasing. Unresolved or poorly resolved
scales change the flow after a relatively longer period than
the Kolmogorov flow.

Figure 3 shows the average error growth and R2 curves as
well as their standard deviation of 100 Alt, HighRes, and
LowRes simulations, respectively, for the periodic shear
forcing setup. We arbitrarily set the threshold for a forecast
to remain valid as having R2 greater than 0.5. The effective
forecast leading time for the LowRes models is around
11 time units (;1 forcing cycle), which is to be improved
through DL methods using HighRes simulations, which have an

effective forecast leading time around 21 time units (;2 forcing
cycles). The upper limit of the predictability for our BVE
problem is about 37 time units based on the ALT simulations.
Having these significantly different effective lead times makes it
easy to quantify the benefits of DL-based parameterizations
with regard to improving forecasting performance.

b. SGS processes

SGS processes refer to the dynamics and physics not re-
solved by a numerical model. The governing equation
[Eq. (1)] on the coarse-grid mesh can be written as

­z

­t
1 J(c, z) 5 2n=4z 1 f (c 2 c0 ) 1 t, (6)

where the overline denotes filtering of the DNS data onto the
LowRes grid mesh. The term t represents the tendency of the
SGS processes,

FIG. 2. (left) Initial conditions for simulations, (center) vorticity fields at t5 15 time units for the TRUTH and ALT simulations, and (right)
RMSE and R2, with R being the correlation coefficient, over time for both forcings when using ALT to predict TRUTH.
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t 5 2[J(c, z) 2 J(c, z)] 1 [ f (c 2 c0) 2 f (c 2 c0 )]: (7)

The effect of the hyperdiffusion is replaced by implicit high-
wavenumber filtering, in which the energy of wavenumbers
greater than 2kmax/3, where kmax is the highest-resolved wave-
number, is tapered down with a minimum tapering factor of
10215 at kmax to avoid energy accumulation at small scales.
Thus, the hyperdiffusion is not included in the expression.
Equation (7) includes two terms, the first is the usual definition
of SGS turbulence in a numerical model, and the second is re-
lated to the forcing, which is more analogous to radiation in the
atmosphere. It appears here because the forcing in the coarse-
grid model is nudging the flow toward a smoothed initial field.
The misrepresented shear can affect the growth of small-scale
eddies, which later interact with larger eddies. Thus, when the
forcing term is active, the parameterization of t becomes chal-
lenging because the actual shear zone is poorly resolved.

In this paper, the DL-based parameterization does not repre-
sent the SGS term as an explicit tendency but rather as a correc-
tion term composed of the collection of SGS processes; that is,

T(z′t01Dt) 5
� t01Dt

t0

tdt, (8)

where

z
′
t01Dt 5 zt0

1

� t01Dt

t0

G (c, z, t)dt (9)

is the partial prediction of vorticity at time t0 1 Dt by integrat-
ing the grid-resolvable dynamicsG (c, z, t) only. The SGS cor-
rection term T is a function of z

′
t01Dt, and the full prediction of

vorticity at time t0 1 Dt is

zt01Dt 5 z
′
t01Dt 1 T: (10)

This corrector form is suggested to provide better numerical
stability (Um et al. 2020; Kochkov et al. 2021), and this

separation of resolved and SGS processes integration is analo-
gous to the idea of partial splitting methods in numerical solv-
ers (Durran 2010).

In addition, we evaluate the performance of the traditional
Smagorinsky turbulence parameterization scheme (Smagorinsky
1963). Note that this can only model the first term on the right-
hand side of Eq. (7), that is,

[J(c, z) 2 J(c, z)] 5 ne=
2z, (11)

where

ne 5 (CsD)2 S
∣∣ ∣∣,

S 5
1
2

­u
­y

1
­y

­x

( )
,

Cs is a coefficient to be determined by linear regression, and
D is a measure of grid size.

c. Model-consistent learning

We denote the BVE model state at time-step tk by xtk
and

continue to use the overline to denote the filtering of the Low-
Res grid mesh. The targeting coarse-grained model state from
HighRes simulation in DL training or TRUTH simulation in
transfer learning is denoted by x̂tk

. For the training of a DL-
based SGS model, we seek a neural network N to represent
T at each time-step tk such that the corrected physical state,

xtk
:5 N (x′ tk ) 1 x′

tk
, (12)

can be used to approximate x̂tk
. Further, still using G to de-

note the dynamical core without the SGS process and denot-
ing the full BVE model asM, we have

x tk11
5 Mxtk

5 (N 1 I )+G xtk
, (13)

where I is the identity map.

FIG. 3. The averaged (right) RMSE and (left) R2 curves over time for ALT, HighRes, and LowRes simulations of
BVE with periodic shear forcing to predict the TRUTH.

QU AND SH I 5JANUARY 2023

Unauthenticated | Downloaded 02/13/23 03:41 PM UTC



1) PRETRAINING

The first objective of our study is to investigate whether
high-resolution simulations can be used to improve the lead
time of operational forecasts. The training data are therefore
selected from the HighRes dataset and coarse grained to
643 64 resolution. A sample series in the training set contains
an initial condition and n consecutive look-ahead steps of
physical states x̂t0

, x̂ t01Dt,…, x̂t01nDt, where Dt 5 0.05 is the
time step for LowRes simulations. For conciseness, we denote
the time-step t0 1 kDt as tk. The neural network N to
be trained is a convolutional neural network (CNN) with
17 layers. The training is carried out by minimizing an accu-
mulative error, which is

L 5 ∑
n

k51
L(Mkx̂t0

, x̂ tk
), (14)

where L captures the difference in the physical states of the
HighRes simulation and the prediction of the ML-enabled
model M at the same time step. When n 5 1, the training of
the neural network falls back to the so-called a priori training
because N is only passed through once and the optimization
of N does not involve the dynamical core G [cf. Eqs. (12)
and (13)].

A natural choice of L is the mean square error (MSE),
which is

Lmse(Mkx̂ t0
, x̂tk

) 5 (Mkx̂t0
2 x̂ tk

)T(Mkx̂t0
2 x̂tk

): (15)

We also test the use a covariance matrix to normalize the
MSE, that is,

Lcov(Mkx̂t0
, x̂tk

) 5 (Mkx̂ t0
2 x̂tk

)TR21
k (Mkx̂ t0

2 x̂tk
), (16)

where Rk is the covariance matrix of x̂ tk
. Matrix Rk can be ill

conditioned, so we use the ridge regression reconditioning
(Tabeart et al. 2020) to improve the conditioning of the co-
variance matrix before calculating its inverse. The idea of
using covariance matrices to normalize cost function origi-
nates from the weak constraint 4D-Var data assimilation,
which relaxes the perfect model assumption and is intended
to update initial condition and model bias errors simulta-
neously (Laloyaux et al. 2020).

We represent N with a CNN, which is often used in com-
puter vision research. The input of the CNN is a batch of
tensors of z,c, f (c 2 c0 ) with shape (64, 64, 3). The output
of the CNN is the corresponding SGS correction term T
with shape (64, 64, 1). The physical variables to be included
for evaluating the loss are vorticity and streamfunction. De-
tails of our CNN architecture and hyperparameters can be
found in appendix A.

We generate a TRUTH run with 20 000 time units. The
training set contains data from 200 to 1000 time units for the
pretraining, which equals 80 cycles of the forcing. We pick
one snapshot every 2.5 time units and apply a local average fil-
ter to get an initial condition for the HighRes simulation at
the resolution of 256 3 256. We run the HighRes simulation

for each initial condition for only 5 time units. This ensures the
HighRes simulations accurately approximate TRUTH with an
average R2 larger than 0.95 according to the predictability limit
test. Then the training set is constructed as the collection of n
consecutive snapshots of the HighRes vorticity field that are
coarse grained to 64 3 64. In this experiment, we perform
the training for n 5 8, 16, 24, 32 to see if including more time
steps in a training sample series can improve the performance.
The case n 5 1 is also tested to see the performance of the
CNN trained without interacting with the dynamical core.

2) TRANSFER LEARNING

We further conduct experiments to investigate the feasibil-
ity of using discontinuous observation data to adjust and im-
prove the pretrained model. The transfer learning is carried
out by fine-tuning the whole pretrained CNN with an accumu-
lative loss function similar to Eq. (14). However, here the
training reference x̂tk

is coarse grained from the TRUTH data
instead of HighRes. Moreover, the observation data are as-
sumed to be temporally sparse, like observation data in real-
ity. Therefore, tk should instead be defined as t0 1 kmDt,
where mDt is the time interval between two consecutive ob-
servations, and the loss function is

L 5 ∑
n

k51
L(Mkmx̂ t0

, x̂tk
): (17)

The input and output variables for transfer learning are the same
as that for pretraining. The training set contains data from the
TRUTH simulation between t 5 1000 and t 5 15000, which
equals 1400 cycles of forcing. We pick one snapshot every
mDt 5 2 time units from the TRUTH simulation, that is, five
observations per cycle, and apply a local average filter to get
64 3 64 resolution observations. Each training sample series con-
sists of n observations; here we conduct transfer learning for n5 3.

3. Results

We select a TRUTH snapshot every 2.5 time units for the
period from 15 000 to 19 500 time units, which is 1400 forcing
cycles later than the training dataset time, and the resulting
collection of snapshots are used as the initial conditions to run
a series of LowRes, HighRes, and LowRes with Smagorinsky
SGS (LowRes_Smagorinsky) simulations. To evaluate the
performance of the DL-based SGS models we obtained, we
conducted the online test, which couples the trained neural
works with the dynamic core, and the accuracy of predicted
vorticity is evaluated.

a. Pretraining

Here, we first report the model’s performance during
15 000–19 500 time units, the whole test period. Figure 4 shows
the averaged coefficient of determination R2 and RMSE
curves for forecasts using the BVE model with dynamic core
coupled with the pretrained SGS models. The Smagorinsky
SGS model performs worse in our BVE configuration than
LowRes, which does not use any SGS model. CNN1, which
includes only one look-ahead step in its training, outperforms
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LowRes in the first time unit, and then the error grows and R2

drops rapidly, giving forecasts significantly worse than Low-
Res. Somewhat surprisingly, the performance of CNN1 is
even significantly worse than the simulation using the Sma-
gorinsky scheme (LowRes_Smagorinsky) after 1 time unit of
lead time. This result suggests that the a priori learning ap-
proach for our problem is of poor generalizability.

Every other DL model with more than one look-ahead
step provides notable improvements in error growth and R2,
which are progressively better as the number of look-ahead
steps increases. The different performance associated with
the number of look-ahead steps is most discernable before
approximately 20 time units of lead time, after which all of
those models lose the validity in their predictions. The im-
provements are further quantitatively reported in Table 1.

The effective forecast lead time refers to a forecast period
during which R2 $ 0.5 with respect to TRUTH. The per-
centage of forecast lead time extended and RMSE is evalu-
ated based on the LowRes simulation’s effective forecast
lead time, which is 11 time units. The percentage of reduc-
ible RMSE that is in fact reduced is the ratio of the RMSE
reduced to the difference in the RMSE of LowRes and
HighRes simulations when LowRes becomes invalid. It is
referred to as “reducible” RMSE because the pretraining
dataset comes from HighRes; thus, it is reasonable to as-
sume that the RMSE of HighRes is the lower bound of the
RMSE of the simulations using our pretrained SGS model.

We first compare the models trained with different numbers
of look-ahead steps of Lmse. In Table 1, including 8 look-ahead
steps to train a CNN results in a 22.73% extension of effective

FIG. 4. Averaged (left) R2 and (right) RMSE curves for online test of pretrained models. LowRes and HighRes are
simulations not using any SGS models. LowRes_Smagorinsky uses the Smagorinsky scheme. CNN indicates that the
pretrained SGS model is a CNN, the number following CNN is the number of look-ahead time steps during the train-
ing, and Cov indicates that the model is trained on the basis of the accumulative covariance-matrix-normalized MSE.
Note that curves CNN16_Cov and CNN32 almost overlap. The horizontal dotted line indicates R2 5 0.5, and the ver-
tical dotted lines indicate the forecast time t5 11 when the LowRes simulation becomes invalid.

TABLE 1. Quantitative evaluation of online tests of models. The RMSE is evaluated when LowRes becomes invalid (R2 , 0.5;
approximately at the lead time of 11 time units), and the reducible RMSE is the difference between HighRes RMSE and LowRes
RMSE, evaluated at the lead time of 11 time units, i.e., reducible RMSE 5 RMSEHighRes|t511 2 RMSELowRes|t511. CNN16_TL is a
fine-tuned CNN16. The boldface font in the table indicates the best result among pretrained models.

Name
Effective forecast

lead time
Percent of forecast
lead-time extended RMSE

Percent of reducible
RMSE reduced

Smagorinsky 8.5 } 1.104 6 0.047 }

LowRes 11.0 } 0.911 6 0.034 }

CNN8 13.5 22.73% 0.766 6 0.032 38.21%
CNN16 15.0 36.37% 0.693 6 0.038 57.51%
CNN24 16.0 45.45% 0.653 6 0.034 67.93%
CNN32 16.5 50% 0.607 6 0.036 80.15%
CNN16_Cov 16.5 50% 0.611 6 0.036 79.08%
CNN16_TL 19 72.73% 0.515 6 0.028 104.49%
HighRes 21.5 } 0.532 6 0.020 }
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forecast lead time and 38.21% reduction of RMSE relative to
LowRes. These improvements can be further increased to
50% and 80.15%, respectively, if the look-ahead step is 32.
Considering the test set is 1400 forcing cycles later in time
than the training set with only 80 cycles, the CNN models
trained with the auto-differentiable dynamic core exhibit sub-
stantial generalizability in our BVE case. Also, increasing the
number of look-ahead time steps in the training phase can sig-
nificantly enhance the model’s forecasting ability.

CNN16_Cov, which has the same CNN architecture as others
but introduces the covariance matrix to normalize the loss func-
tion, remarkably outperforms CNN16. Both are trained with
16 look-ahead steps. CNN16_Cov achieves almost the same per-
formance as CNN32 for effective forecast lead time and RMSE.
Changing the R2 threshold will not change the conclusions
above; see appendix B for the sensitivity test. It is also worth
mentioning that the training of CNN16_Cov converges after
20 epochs while CNN32 converges after around 100 epochs.
These improvements are statistically significant, and detailed
hypothesis tests are discussed in appendix C.

It is natural to ask whether the improvements brought about
by DL models can be preserved when the test set is farther
away from the training set in time. For a good parameterization,
we hope the improvements can be time invariant. Therefore,
we divide the test period into nine successive segments and re-
port the time-averaged R2 and RMSE series in Fig. 5. The
curves do not show an increasing trend in RMSE or a decreas-
ing trend in R2. The online test performance is not influenced
by how far in time it is conducted relative to the training set.
This insensitivity indicates that the DL parameterization trained
with the auto-differentiable dynamic core is time invariant in
our BVE case.

The time-averaged enstrophy spectrum can be used to eval-
uate the statistical performance of the models and is shown in
Fig. 6. The LowRes simulation cannot sufficiently resolve
high-wavenumber vorticity and underpredicts enstrophy at

medium and large wavenumbers. The enstrophy spectrum of
LowRes_Smagorinsky is significantly different from that of
other models for both large and small wavenumbers. All DL
models trained with the auto-differentiable dynamic core pro-
vide a better simulation of the smallest scales of the vorticity
field relative to LowRes. However, including more look-
ahead steps does not help increase the performance here.
CNN32 gives the least-satisfactory simulation among all the
DL models for the smallest scales, contrasting with its highest
effective forecast lead-time extension and RMSE reduction.
CNN8 gives the best small-scale enstrophy distribution. How-
ever, it cannot sufficiently represent large-scale structures.
CNN16_Cov slightly improves the smallest-scale simulation
when compared with CNN16 and CNN24. One possible rea-
son is that the neural networks were optimized only based on
accumulated mean square error, without any penalty on the
spectral distribution of enstrophy. Another possible reason is
the operator used for coarse graining. According to Ross et al.
(2023), the online spectral results are related to filtering and
the coarse graining choice. So the designing of dataset is also
critical.

Overall, the CNN turbulence models trained with more
look-ahead steps of Lmse exhibit longer extensions of effective
forecast lead time and forecast error reduction. These im-
provements are time invariant, suggesting the generalizability
of our SGS model training approach. However, including
more look-ahead steps does not help simulate the smallest-
scale dynamics better, and the reason behind this is unclear.
Normalizing Lmse by covariance matrices elevates model per-
formance and shortens model training time. There are also
other reasons why CNN16_Cov is preferable to CNN32,
which we will discuss in section 3c.

b. Transfer learning

We first tried training a randomly initialized CNN using
temporally sparse data, but the training hardly converged. In

FIG. 5. The (left) R2 and (right) RMSE time series for online tests of pretrained models for the averaged results from
each of the nine successive time segments.
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the forward pass of the first training step, the randomly initial-
ized CNN adds noise after every integration step of the
BVE model; the error can grow considerably large before
the first MSE calculation, which is conducted after 40 steps
of dynamical core integration and SGS model “corrections.”
This makes training from scratch using temporally sparse

data hard and underscores the importance of the pretraining
using “continuous” high-resolution data.

Figure 7 shows the transfer-learning results using the pre-
trained CNNmodels. Using the same neural network structure
and taking weights of the pretrained CNN16 as initialization,
the fine-tuned CNN16 achieves substantial improvements. For

FIG. 7. Averaged (top) R2 and (bottom) RMSE curves for online tests of model performance after the transfer learnig of the SGS mod-
els. Curves for pretrained SGS models are labeled as Original, and TL indicates the results for an SGS model improved through transfer
learning.

FIG. 6. Enstrophy spectrum averaged over the testing period.
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forecast RMSE, the fine-tuned CNN16 outperforms HighRes
for up to 11 time units with very small standard deviance. The
effective forecast lead time is 19 time units for the fine-tuned
CNN16, a 72.73% extension relative to LowRes. In comparison
with the best-performed pretrained CNN16_Cov, CNN16_TL
extends 22.73% of forecast lead time and reduces 25.41% of re-
ducible RMSE, although R2 is still not as good as HighRes.

Note that the same training strategy and network structure
are used; we observe that choosing a pretrained model to
fine-tune is critical. However, it still needs to be determined
how to make a good choice. A better-pretraining R2 and
RMSE does not guarantee a better fine-tuned network. The
performances of CNN8, CNN24, and CNN32 after transfer
learning are slightly improved relative to CNN16. The geome-
try of the loss function used in our transfer learning, which is
an accumulated MSE over tens of integration steps, may be
very complicated. Therefore, it may not be surprising that
they end up staying at different local minimums. As the

prediction is sensitive to tiny differences, the online-test re-
sults of the fine-tuned networks can be sensitive to the choice
of the pretrained initial weight for transfer learning.

Figure 8 illustrates one instance of 30-time-unit predictions
of different simulations starting from a TRUTH initial condi-
tion at t 5 16 525 time units. After 6 time units, each model
can forecast the position of vortices well. There are some nu-
merical oscillations at small scales in the LowRes simulation,
which can be removed by our DL-based SGS models. After
15 time units, LowRes cannot predict the correct position of
the two vortices that should be near the left edge, but the
models using the DL-based turbulence models can predict
with good accuracy. After 18 time units, CNN16 and
CNN16_Cov lost their ability to simulate most of the vorti-
ces, which, however, can still be predicted by CNN16_TL.
After 30 time units, the CNN16_TL simulation well simu-
lates vortices that cannot be successfully simulated by high-
resolution models, as highlighted in Fig. 8. This instance

FIG. 8. Vorticity fields of 30-time-unit predictions starting from a TRUTH initial condition at t5 16 525 time units.
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indicates the fine-tuned model has the potential to outperform
HighRes simulation in some cases, although, on average, after
30 time units, the forecast produced by CNN16_TL has lower
R2 relative to HighRes.

c. Computational cost

Recall that n is defined as the number of look-ahead steps.
For pretraining, there are n times of iteration through the
neural networks and dynamic core for calculating the loss and
its gradient. Therefore, the training can be time-consuming.
Table 2 reports the wall time required to train a batch of 8
samples for the same CNN with different look-ahead steps.
The test is conducted on a single NVIDIA RTX3090 with
80% memory preallocation. The training time per batch is lin-
ear with respect to n. Using a covariance-matrix-normalized
loss function increases the training time slightly because of ad-
ditional matrix multiplication. CNN16_Cov takes one-half of
the training time of CNN32 per batch, yet they perform al-
most identically, and CNN16_Cov gives a better enstrophy
spectrum.

Another issue to consider is the additional computation
time due to using the DL-based SGS model coupled with the
dynamic core when the model is used to forecast. Table 3
shows the time required for different calculation processes in
forecasting starting from one initial condition. The inference
of the DL model takes 36.38% of the time of the whole simu-
lation. Therefore, the additional cost of using a DL-based
SGS model is not negligible, but it is affordable and within a
reasonable range considering the complexity of turbulence.
As a reference, radiation is usually the most computationally
expensive part of an atmospheric model; our experience with
the latest version of Cloud Model 1, release 21.0 (CM1; Bryan
and Fritsch 2002), is that the one-step computation time of ra-
diation, using the RRTMG scheme (Iacono et al. 2008), is ap-
proximately 11 times of the computation time of CM1’s
dynamical core (mainly advection). Most modelers chose to
calculate the radiation only once in multiple model steps to
save the overall computational cost. It is also a possible strat-
egy for DL-based SGS models to save computation time in
applications.

4. Summary and discussion

In this study, we demonstrated a potential strategy to en-
hance the prediction skills of NWP models using an idealized

BVE case. The strategy starts with pretraining a DL-based
SGS process model using high-resolution simulation data, and
then we fine-tune the pretrained DL model with transfer
learning using observation data. The pretraining is accom-
plished by incorporating an auto-differentiable dynamic core
and exhibits considerable extension of forecast lead time and
reduction in RMSE. The DL-based SGS model has significant
generalizability as the improvement is time invariant. Using a
covariance matrix to normalize the loss function can also im-
prove the performance at a lower computational time cost.

The pretrained SGS model is further fine tuned with the au-
todifferentiable dynamic core and temporally sparse data for
transfer learning. The forecast ability of the models can be
further enhanced. When this strategy is applied to an opera-
tional forecasting model, we can train a DL model using a rel-
atively large high-resolution dataset once and keep updating
it as we accumulate more observation data. Our study shows
that this strategy is promising in substantially improving NWP
forecast skills. As the observational data are always sparse
and noisy, performing transfer learning from these data would
be an interesting future topic.

However, there are still some remaining challenges. The
first challenge is the representativeness of our idealized
study case, which is a two-dimensional flow. Previous stud-
ies (Kochkov et al. 2021; Frezat et al. 2022) also apply differ-
entiable physics-based training on two-dimensional flows. A
necessary follow-up research direction is to investigate this
strategy in three-dimensional flows. In a three-dimensional
problem, the computational and dynamical complexity is
significantly higher; therefore, the look-ahead steps can
be limited, and the choice of DL models also needs to be
adjusted accordingly.

Another potential issue is related to the model generaliz-
ability implied by our study. The statement that our model
is “time invariant” is based on our case with only one tem-
porally periodic forcing. The real atmosphere and climate
systems possess forcing variability at different time scales,
from diurnal cycles to decadal oscillations, thus requiring
more data to encompass all those variabilities in pretraining.
However, most likely, we cannot have sufficient samples to
represent low-frequency climate variability or global warming–
induced changes; therefore, the DL-based SGS models may en-
counter “out of sample” features that hinder their performance.
This issue highlights the importance of updating DL models us-
ing transfer learning investigated in our study. A next-generation
NWP probably should keep learning from a continuous stream
of observation data to adjust its behavior, which involves a rel-
atively new field called lifelong learning or continual learning
(Parisi et al. 2019).

We observed some inconsistencies in our study. For pretrain-
ing, we saw that RMSE and R2 improved, but the enstrophy

TABLE 2. The wall time (s) required to train a batch of 8
samples.

Name: CNN8 CNN16 CNN16_Cov CNN24 CNN32

Time 0.0815 0.1759 0.1806 0.2678 0.3618

TABLE 3. The wall time (ms) required for a 10-time-unit (1 cycle) forecast with HighRes dynamical core, LowRes dynamical core,
and DL parameterization.

Process HighRes integration LowRes integration Calculate DL input DL inference Correction

Time 1138.56 128.02 72.72 120.19 9.48
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spectrum did not. Also, a pretrained weight with better on-
line-test RMSE and R2 may not be better performed when
working as the initial weight for transfer learning. We be-
lieve that one of the causes for these inconsistencies comes
from how we optimize and evaluate our model, and the
conventional loss functions and metrics may not be suffi-
cient. It would be meaningful to further explore possibili-
ties to design loss functions and metrics
to train and identify a deep learning model with better
consistency.

The approach to developing the DL-based SGS turbu-
lence model proposed in this study requires the dynamic
core of interest to be automatically differentiable; thus, the
availability of an auto-differentiable NWP dynamical core is
essential. There are now projects that noted the potential of
differentiable programming for Earth system modeling,
such as the differentiable programming in Julia for Earth
system modeling (DJ4Earth) program (Edelman et al.
2021). We believe that the deep learning–based turbulence
models combined with an automatically differentiable dy-
namic core will bring us a significant step forward in advanc-
ing modern NWP and climate models, which will become
capable of exploiting high-resolution simulations, observa-
tions, and deep learning (Schneider et al. 2017).
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APPENDIX A

Neural Network Architectures and Hyperparameters

All of the layers and operations that compose the CNN are
shown in Fig. A1. Following the basic ConvNet structure used by
Kochkov et al. (2021), we set the kernel size as 33 3. For detailed
configuration of each convolutional layer, we set the interwindow
stride, input dilation, and kernel dilation as 1. This makes the
width and height of the output feature map from each convolu-
tional layer the same as that of the input featuremap. Further, we
did not include any pooling layer; therefore, the spatial dimen-
sions of the input and output of the CNN are identical. The input
of the CNN is a batch of tensors of z,c, f (c 2 c0 ) with shape
(64, 64, 3), and the output of the CNN is the corresponding SGS
correction termTwith shape (64, 64, 1).

We did not include batch normalization and dropout.
The activation function for each convolution layer except
for the last one is Gaussian error linear unit (GELU). As
compared with the rectified linear unit (ReLU), GELU intro-
duces increased curvature and nonmonotonicity, which poten-
tially makes it easier to approximate complicated functions
(Hendrycks and Gimpel 2016).

APPENDIX B

Sensitivity Test

We conducted a sensitivity test to see how the percentage of
forecast lead time extended changes with respect to the rising R2

threshold. The range of theR2 threshold that we tested is 0.5–0.9.
As shown in Fig. B1, changing the threshold does not change the
relative order of howwell individualmodels perform.

APPENDIX C

Test of Significance

The distributions of R2 are not normal; we applied a non-
parametric Mann–Whitney U rank test for the distributions

FIG. A1. CNN architecture used in this study, consisting of four
convolution blocks, each containing four 2D convolution layers
and GELU activations. The number of channels for the four con-
volution layers is 128, 64, 64, and 64, respectively, and the kernel
size is 33 3.

FIG. B1. Changes in percentage of effective forecast lead time for
different models with respect to rising R2 threshold.
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of R2 of different models at given forecast lead time t. We
have 200 samples of R2 for a given model at given forecast
lead time t. The null hypothesis to be tested is that two dis-
tributions of R2 are identical. The test results are shown in
Fig. C1. The effective lead times for different models that
are compared in Table 1 lie in the intersection of the signif-
icant time intervals of all the single-sided Mann–Whitney
U rank test. So the improvements of R2, and therefore the
effective forecast lead time extensions, brought by online-
trained models and the fine-tuned model mentioned in
Table 1 are statistically significant with p value , 0.05.
There is also a two-sided Mann–Whitney U rank test,
which is colored in pink in Fig. C1, that illustrates that
most of the time we cannot reject the corresponding null
hypothesis that the distributions of R2 of CNN16_TL and
CNN32 are identical. The statistical significance makes us
more optimistic to give a positive answer to the question
posed by the paper’s title.
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