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Abstract This study aims to understand the nature of the tropical intraseasonal oscillations (ISOs) in an
aquaplanet simulation performed using Geophysical Fluid Dynamics Laboratory’s AM2.1 with a uniform
sea surface temperature within the deep tropics. The simulated ISO resembles the observed Madden-Julian
Oscillation in that the spectral peak in precipitation appears at zonal wave number 1 and a period of
~60 days. Vertically integrated moist static energy budget of the simulated ISO shows that enhanced latent
heat flux to the east of anomalously active convection causes eastward propagation of the ISO mode, which
is weakly opposed by horizontal moisture advection. A series of mechanism denial experiments are
conducted either by homogenizing select variables—surface wind stress, longwave radiative heating, and
surface evaporation—with their zonal means from the control simulation or by suppressing free-
tropospheric moisture variation. Results of the mechanism denial experiments show that the simulated ISO
disappears when the interactive surface evaporation is disabled, suggesting that the wind-induced
surface heat exchange (WISHE) mechanism is essential to the simulated ISO. Longwave cloud-radiation
feedbacks and moisture-convection feedbacks affect horizontal scale and phase speed of the simulated ISO,
respectively. Our results strongly suggest that the simulated ISO is the linear WISHE-moisture mode of
Fuchs and Raymond under horizontally uniform boundary conditions.

1. Introduction

Aquaplanet simulations—running numerical models of the atmosphere on a water-covered Earth—are in a
unique position in the hierarchy of atmospheric modeling systems and have served an important role in
understanding the dynamics of various atmospheric phenomena (Blackburn & Hoskins, 2013). The tropical
intraseasonal oscillation (ISO) is no exception in this regard. The first aquaplanet simulation using an atmo-
spheric general circulation model was performed by Hayashi and Sumi (1986), who observed a 30- to
40-day tropical ISO in their simulation. Their results demonstrated that aquaplanet simulations are a useful
method to study the tropical ISO. Since then, many modeling studies of the tropical ISO have employed
the aquaplanet configuration (e.g., Andersen & Kuang, 2012; Arnold et al., 2013; Das et al., 2016;
Grabowski, 2003; Hsu et al., 2014; Kang et al., 2013; Y.-J. Kim et al., 2008; Lee et al., 2001; Leroux et al., 2016;
Swinbank et al., 1988). Readers are referred to Leroux et al. (2016) for a brief review of previous aquaplanet
modeling studies on the tropical intraseasonal variability.

The Madden-Julian oscillation (MJO, Madden & Julian, 1971, 1972) is the dominant mode of tropical intrasea-
sonal variability whose influence on the global weather-climate system is well documented (Zhang, 2013).
While the salient features of the MJO—planetary zonal scale, 30- to 60-day period, and eastward propagation
at ~5 m/s over the Indo-Pacific warm pool—have been well known for many decades, our understanding of
the MJO is still unsatisfactory.

One of the distinguishing features of the MJO is the strong spatial and temporal coupling between tropo-
spheric water vapor and latent heat release (Myers &Waliser, 2003; Yasunaga &Mapes, 2012), which is central
to multiple recent theories for the MJO (Adames & Kim, 2016; Fuchs & Raymond, 2017, FR17 hereafter; Majda
& Stechmann, 2009; Sobel & Maloney, 2012, 2013; Wang & Chen, 2017). In the so-called “moisture mode the-
ories”, the processes that determine the growth and propagation of the large-scale moisture envelope also
explain those of the MJO. With the common core concept, the different linear theories of the moisture mode
emphasize different processes for MJO propagation, maintenance, and scale selection. The processes that are
suggested as key destabilization and planetary-scale selection mechanism of the MJO include a negative
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gross moist stability (GMS) or the moisture mode instability (Raymond & Fuchs, 2009), the cloud-radiative
feedbacks (Adames & Kim, 2016), and wind-induced surface heat exchange (WISHE; Emanuel, 1987; Fuchs
& Raymond, 2017; Neelin et al., 1987). Similarly, for the processes that drive the propagation of the MJO,
horizontal moisture advection (Adames & Kim, 2016), frictional moisture convergence (Wang & Chen, 2017),
and WISHE (Fuchs & Raymond, 2017) have been emphasized.

All these theories share the common feature that they are based on zonally symmetric mean states.
Horizontally, homogenous mean states without zonal or meridional SST gradients are sometimes used
(Fuchs & Raymond, 2017). Simulations on a zonally symmetric aquaplanet could provide a useful framework
to test the importance of the key mechanisms suggested by different theories to simulated intraseasonal
variability since the modeled mean state resembles those assumed by linear theory.

Many previous aquaplanet modeling studies have aimed at providing useful insights into the dynamics of the
MJO. Inspired by the moisture mode theory, moist static energy (MSE) budget of ISOs simulated in
aquaplanet simulations are analyzed. Maloney et al. (2010) showed based on the MSE budget that WISHE
and horizontal moisture advection were key to the destabilization and eastward propagation of an MJO-like
mode in their simulation. Andersen and Kuang (2012) performed aquaplanet simulation with the
Superparameterized Community Atmospheric Model (SPCAM) and suggested that the longwave cloud-
radiation feedbacks, which were the main source of MSE, played a key role in the growth of the MJO-like
disturbance in their simulations. Simulations of a rotating radiative-convective equilibrium simulation by
Arnold and Randall (2015) further supported the role of longwave radiative heating in the maintenance of
the MJO. The aquaplanet modeling studies have often been accompanied by mechanism denial experiments
(Chao & Chen, 2001; Grabowski, 2003; D. Kim et al., 2011; Lee et al., 2001; Maloney & Sobel, 2004; Sobel et al.,
2010). For example, Lee et al. (2001) specified the zonal mean net radiative heating rate and found that
cloud-radiation interaction had negative effects on the tropical intraseasonal variability by effectively exciting
small-scale disturbances. Grabowski (2003) tested the role of WISHE and cloud-radiation interaction in the
maintenance of an MJO-like disturbance and found that WISHE had a moderate importance in the
development of the disturbance, while cloud-radiation interaction played a minor role.

The current study is motivated by the results of a global rotating radiative-convective equilibrium simulation
performed by Shi and Bretherton (2014) using the Geophysical Fluid Dynamics Laboratory (GFDL)’s AM2.1
(Anderson et al., 2004). In their simulation, AM2.1 was driven by globally uniform sea surface temperature
(SST) on an aquaplanet. Shi and Bretherton (2014) unexpectedly found an MJO-like intraseasonal variability
in their simulation. It was unexpected because it has been documented that AM2.1 cannot realistically simu-
late the MJOwith the observed SST and the full geography (D. Kim et al., 2011). The goal of the current work is
to illuminate the dynamics of the simulated ISO mode by analyzing the moist static energy budget of the
mode and also by performing a series of mechanism denial simulations.

The structure of the current document is as follows. Section 3 describes the simulations performed, including
themechanism denial experiments. In section 4, we examine vertically resolvedmoisture budget of the simu-
lated ISO mode. Section 5 presents the results of the mechanism denial simulations. A summary and discus-
sions on the nature of the simulated ISO mode are given in section 6.

2. Model and Simulation Design
2.1. Numerical Model

The atmospheric general circulation model used in this study is the GFDL’s AM2.1 (Anderson et al., 2004).
Standard physics schemes and parameters of AM2.1 are adopted in our simulations. AM2.1 has a finite-
volume dynamical core on a latitude-longitude grid (Lin, 2004), which in our simulations has a resolution
of 1 latitude by 1.25 longitude, with 24 vertical levels. As detailed in Anderson et al. (2004), clouds and
precipitation in AM2.1 are parameterized with the aid of prognostic variables for the cloud fraction and
the specific humidities of cloud liquid water and cloud ice, and grid-scale fluxes of rain and snow are
computed diagnostically from these prognostic fields (Rotstayn, 1997; Rotstayn et al., 2000; Tiedtke, 1993).
Cumulus convection is represented by the Relaxed Arakawa-Schubert formulation of Moorthi and Suarez
(1992). Readers interested in details of AM2.1 physics schemes or dynamics are referred to Anderson et al.
(2004), and references therein.

10.1029/2018MS001441Journal of Advances in Modeling Earth Systems

SHI ET AL. 2



2.2. Control Simulation

The SST for our control aquaplanet simulation is uniform in the deep
tropics between 15°S and 15°N and shows a gradual transition to 2°C
between 15°S/N to the South/North Poles (Figure 1). This prescribed SST
is zonally invariant. Note that by using this SST distribution, we attempt
to reproduce the simulation analyzed by Shi and Bretherton (2014), except
that we impose a meridional SST gradient poleward of 15°S/N in order to
make the simulation more relevant to the Earth’s climate.

2.3. Mechanism Denial Experiments

Based on the control simulation, we performed a series of mechanism
denial experiments, in which certain feedback processes are disabled
by muting the variability of key variables. Here in each experiment,
the variability of a select field is eliminated or suppressed in the deep
tropics between 15°S and 15°N. The target feedback process and
experimental design of the mechanism denial experiments are
described below.

(a) Nudge_q, Fixed_q

In the Nudge_q and Fixed_q simulations, perturbations in specific humidity q in the deep tropics above
850 hPa is nudged toward and fixed to the desired vertical profile, respectively. The reference profile is
obtained from the control run. The Nudge_q experiment uses a 60-hr nudging time scale. By artificially sup-
pressing and inhibiting free-tropospheric moisture variability, the Nudge_q and Fixed_q experiments test the
role of moisture-wave coupling in the simulated ISO mode.

(b) Fixed_tau

In the Fixed_tau experiment, the zonal mean surface wind stress from the control simulation is prescribed in
the deep tropics. This disables the interaction of large-scale circulation with the friction-induced boundary
layer convergence, which has been proposed a key process to MJO’s eastward propagation (Hsu & Li,
2012; Wang, 1988; Wang & Li, 1994; Wang & Rui, 1990).

(c) Fixed_QLW

As in the Fixed_tau experiment, the zonal mean longwave radiative heating rate is obtained from the control
simulation and prescribed in the Fixed_QLW experiment. Therefore, the longwave cloud-radiation feedbacks
are turned off in this simulation. The interaction of longwave cooling with MJO-induced moisture and cloud
anomalies have been suggested as the dominant maintenance mechanism of the MJO (Adames & Kim, 2016;
Andersen & Kuang, 2012; Arnold & Randall, 2015; Bony & Emanuel, 2005; Crueger & Stevens, 2015).

(d) Fixed_LH

In the Fixed_LH experiment, the interaction between large-scale circulation and surface latent heat flux is dis-
abled by prescribing surface latent heat flux, which is obtained from the control simulation as the zonal mean
value. This experiment tests the influence of wind-evaporation feedback or WISHE mechanism (Emanuel,
1987, 1993; Fuchs & Raymond, 2017; Neelin et al., 1987; Yano & Emanuel, 1991) on the MJO-like ISO mode.

Each experiment is run for 12 years. The first 2-year data are discarded as spin-up, and the last 10-year data
are retained for analysis. Model data are archived with daily intervals for the analysis.

2.4. Regression Maps

In each simulation, we define intraseasonal variability (ISV) index as the 20- to 100-day band-pass filtered pre-
cipitation in a 10° × 10°square region centered at the equator. The time series of ISV index is used to produce
regressionmaps of other variables. We did not choose time/wave number-filtered anomalies to create the ISV
index because the wave number, frequency, and propagation direction of the dominant mode change
significantly from one experiment to another.

Following Adames and Wallace (2014), the regression map for each variable is obtained through
the equation.

Figure 1. Prescribed sea surface temperature (SST) in the simulations.

10.1029/2018MS001441Journal of Advances in Modeling Earth Systems

SHI ET AL. 3



D ¼ S PT=N (1)

where D is the regression pattern, in dimensional units, for a two-dimensional matrix S that represents a vari-
able field S, P is a standardized time series of the ISV index, and N is the sample size in days. The regression
maps correspond to 1-standard-deviation anomalies.

3. MJO-Like ISO Mode in the Control Simulation

In this section, we examine the mean state and the intraseasonal variability in the control simulation. Figure 2
shows the distribution of mean precipitation and precipitable water in the control simulation. The mean
precipitation exhibits two Inter Tropical Convergence Zones (ITCZs) at around 15°N/S, respectively. Except
near the latitude of the ITCZs, mean moisture in the deep tropics exhibits very weak gradient in the meridio-
nal direction. The very weak horizontal moisture gradient suggests that the advection of mean moisture by
perturbation winds would be small.

Figure 3 shows the space-time spectrum of equatorial precipitation in the control simulation. Only the spec-
trum of the symmetric component is shown as it dominates the antisymmetric component. Tropical variabil-
ity in the control run is dominated by a wave number-1 mode that propagates eastward and has a period of
about 60 days, resembling that of the observed MJO. Hereafter, we will call this MJO-like mode the aquapla-
net ISO mode, or simply the ISO mode. It is also worthwhile to mention that due to strong surface easterlies
(not shown), the power spectrum features a pronounced westward propagating signal.

The horizontal structure of the ISO mode in the control simulation is presented in Figure 4, which shows
regression maps of precipitation, 850-hPa wind, 850-hPa streamfunction, and evaporation. All fields are
dominated by wave number-1 structures. Near the equator, the low tropospheric wind anomalies exhibit

strong convergence at the location of maximum precipitation anomaly.
This low-level convergence is much stronger in the zonal direction than
in the meridional direction. The meridional wind anomalies are overall
much weaker than the zonal wind anomalies. Away from the equator,
streamfunction anomalies indicate a poleward flow at the longitude of
and to the west of enhanced convection. This differs from the structure
of the MJO in the reanalysis products, which has a poleward anomalous
flow to the east of enhanced convection (e.g., Adames & Wallace, 2015;
D. Kim et al., 2014). Figure 4b shows evaporation anomalies in contours,
and the closed contour at 90°W and on the equator indicates the maxi-
mum. It shows that surface evaporation anomalies lead precipitation
anomalies by about 90° in longitude, suggesting that enhanced surface
latent heat flux to the east of enhanced convection may be responsible

Figure 2. Time mean, zonal mean distribution of (a) precipitable water (PW, mm) and (b) precipitation rate (mm/hr) in the
control simulation.

Figure 3. Space-time spectrum of the symmetric component of precipita-
tion within between 15°S and 15°N in the control simulation.
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for the eastward propagation of the ISO mode. This phase relationship between precipitation and surface
evaporation in the aquaplanet-simulated ISO mode contrasts with that of the observed MJO, in which
evaporation is enhanced to the west of convection, not to the east (Shinoda et al., 1998). Interestingly,
both precipitation and surface evaporation show swallowtails to the west of maximum anomalies.

Figure 5 shows the vertical structure of the aquaplanet ISO mode. The maximum positive moisture anomalies
appear at the location of the maximum precipitation anomalies, suggesting a strong moisture-convection
coupling in the ISO mode. Moisture anomalies tilt slightly westward with height. Due to the rearward tilting,
moisture anomalies in the upper troposphere slightly lag precipitation anomalies. The mass flux anomalies
show a strong low-level convergence and strong upper-level divergence slightly to the west of enhanced

Figure 4. The regression map of precipitation (color), 850-hPa wind (vectors), 850-hPa streamfunction (contours in a) and
surface evaporation (contours in b) onto the intraseasonal variability index time series in the control simulations. Dashed
contours indicate negative values. Units for precipitation is mm/hr. Contour interval for evaporation is 0.004 mm/hr.

Figure 5. Regression map of mass flux (ρu and ρw), specific humidity (q; color shading) and temperature (T; contours)
within 5°S and 5°N onto the time series of ISV index in the control simulation. The unit of q is g/kg. Contour interval for
T is 0.1 K. ρw is multiplied by a factor of 250 for better visualization.
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convection. Positive temperature anomalies are located to the east of positive moisture anomalies and tilt
westward with height, showing that temperature anomalies are partly in phase with convection. This partly
in-phase relation between temperature field and convection (diabatic heating) has been suggested as the
destabilization mechanism of the WISHE-driven mode (Emanuel et al., 1994).

In order to understand the time evolution of themoisture anomalies, which are tightly coupled to convection,
the column-integrated MSE budget of the ISO mode is examined. The tendency of anomalous MSE is deter-
mined as follows:

∂h
0

∂t
¼ � V ·∇hh i0 � ω

∂h
∂p

� �0

þ LH
0 þ SH

0 þ LW
0 þ SW

0
; (2)

where h is MSE, LH and SH represent surface latent and sensible heat flux, respectively, and LW and SW repre-
sent column-integrated longwave and shortwave radiative heating, respectively. The primes in equation (2)
correspond to 20- to 100-day filtered fields and the angled brackets represent column integration. The ten-
dency and advection terms are obtained using the centered differencing scheme. Note that the MSE budget
is not closed and a small residual term (about 10% of the amplitude of MSE tendency term) exists, due to the
errors caused by the temporal interpolation of model output and by the use of the centered differencing
scheme, which is not the same as the actual advection scheme of the model.

Figure 6 shows regression maps of each term in the MSE budget equation. Note that surface sensible heat
flux and shortwave radiative heating terms are not shown as their magnitude is much smaller than those
of the other terms in equation (2). The MSE tendency (contours) features increasing MSE anomalies, which
is mostly due to moistening (not shown), to the east of enhanced convection and decreasing to the west.
While the magnitude is relatively small, horizontal advection shows a positive (negative) tendency to the
west (east) of enhanced convection, suggesting that horizontal moisture advection slows the eastward pro-
pagation of the ISO mode. The drying tendency to the east of enhanced convection is possibly caused by the
advection of dry air from the region with suppressed convection to the moist region with enhanced convec-
tion (Figure 5). The overall weak intensity of horizontal advection likely results from the lack of zonal andmer-
idional gradients in the climatology (Figure 1).

Vertical advection of MSE provides a strong moistening tendency in the columns with enhanced convection
and in the region surrounding it. This moistening is associated with the vertical gradient of moisture and
strong upward motion in convection. Away from the center of enhanced convection, vertical advection asso-
ciated with downward motion creates a strong drying tendency. Condensation exhibits the opposite phase
to that of vertical advection. It produces a drying tendency in the place with strong updrafts due to conden-
sation, a moistening tendency in the place with subsidence due to suppressed condensation.

Figure 6d shows that the moistening to the east of and drying to the west of the enhanced convection is
dominated by surface evaporation. In fact, horizontal distribution of the anomalous surface latent heat flux
is almost identical to that of the total tendency. And the magnitude of surface latent heat flux in the areas
of large tendencies is much larger than that of the other terms. This result strongly suggests that the eastward
propagation of the ISO mode is driven by the surface latent heat flux anomalies.

4. Mechanism Denial Experiments

In this section, we examine results from the mechanism denial experiments (section 2.3) in order to seek a
deeper understanding of the dynamics of the simulated ISO mode in our control simulation. Figure 7 shows
the climatological mean distribution of precipitable water and precipitation in all simulations. Except for the
Fixed_tau simulation, which exhibits slightly more precipitable water than other simulations, all simulations
have a similar amount of precipitable water in the tropics with a weak meridional gradient of precipitable
water in the deep tropics.

Figure 8 shows the space–time spectra of equatorial precipitation in the mechanism denial experiments. The
spectrum of the control simulation is shown again as a reference. The spectrum of Fixed_tau resembles that
of the control simulation; intraseasonal variability in the Fixed_tau experiment remains dominated by an
eastward propagating, wave number-1 mode with a period of about 60 days. This suggests that the
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Figure 7. Time mean, zonal mean (a) precipitable water and (b) precipitation rate in all simulations.

Figure 6. MSE tendency (contours) and various MSE budget terms (shaded) regressed onto the ISV index in the control simulation. (a) MSE anomalies, (b) horizontal
advection, (c) vertical advection, (d) surface latent heat flux, and (e) column-integrated longwave radiative heating. MSE = moist static energy; ISV = intraseasonal
variability.
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interaction between lower-tropospheric circulation and surface wind stress is not the key mechanism
governing the simulated ISO in the control simulation.

The Fixed_QLW simulation exhibits a significant change in the spectrum. Its intraseasonal variability is still
dominated by eastward propagating waves, but the variability is spread over a wide wave number band from
wave number 1 to 6, unlike in the control simulation, in which spectral power is concentrated on the wave
number 1. Interestingly, the spectrum shows a dip at wave numbers 2 and 3. This suggests that the longwave
cloud-radiation feedback plays an important role in the scale selection of intraseasonal variability, consistent
with the theoretical arguments by Adames and Kim (2016). The spectral peak over the band of the convec-
tively coupled Kelvin waves becomesmore prominent when compared to the control simulation. D. Kim et al.
(2011) also found that turning off the longwave cloud-radiation feedback strengthens the convectively
coupled Kelvin wave at the expense of MJO variability.

To test if the longwave cloud-radiation feedbacks in the control simulation are indeed scale selective, we esti-
mate the wave number dependence of the radiative feedback parameter r, which is defined by the following
relationship,

R
0 ¼ rP

0
; (3)

where R
0
and P

0
are anomalies of outgoing longwave radiation at the top of

the atmosphere and precipitation at the surface, respectively. Following
Adames and Kim (2016), we decompose the 20- to 100-day filtered
R
0
and P

0
within 15°S and 15°N into contributions from individual zonal

wave numbers and compute r for each wave number through linear least
squares regression. Data on each latitude circle are computed, and the
averaged feedback parameter as a function of zonal wave number is
shown in Figure 9, which suggests that r decreases with wave number in
general, and the cloud-radiation feedback is indeed scale selective. The
relation between r and zonal wave number k can be depicted by the fol-
lowing empirical formula,

r ¼ r0e
�Lrk : (4)

Least squares fitting with data in Figure 9 results in r0 = 0.22 and
Lr = 244 km, consistent with the estimates of Adames and Kim (2016) using
observational data.

Figure 8. Space-time spectra of the symmetric component of precipitation within 15°S and 15°N in the simulations.

Figure 9. Cloud-radiation feedback parameter r as a function of zonal wave
number (red dots). The black solid curve is the linear least squares regression.
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However, an intriguing detail of Figure 9 is that the radiative feedback is not strongest at wave number 1;
instead, the feedback parameter peaks at wave numbers 2 and 3, while the estimation based on observa-
tional data suggests that r is largest at wave number 1 (Adames & Kim, 2016). This disparity may be caused
by inaccurate parameterization of convection and clouds in the model or from uncertainty in the calculation
of r for each zonal wave number. That the cloud-radiation feedbacks are strongest at wave numbers 2 and 3,
not at wave number 1, may also suggest that while cloud-radiation feedback is important for scale selection
in the control simulation, some other mechanism, such as the WISHE feedback (Fuchs & Raymond, 2017),
coexists to selectively amplify the intraseasonal variance at wave number 1 in the model. Indeed, while the
low-frequency variance spreads between wave number 1 to 6 in Figure 8e, wave number 1 still exhibits
slightly larger variance than wave numbers 2 and 3, supporting this hypothesis.

In the Nudge_q experiment, in which the free-tropospheric moisture variability is constrained, the wave
number-1 mode shows a notable increase in frequency, and a significant drop in variability (Figure 8b).
Further increase in frequency and decrease in power are observed when free-tropospheric moisture is not
allowed to vary at all in the Fixed_q experiment (Figure 8c). The increase in the phase speed of the dominant
ISO mode can also be seen in the space-time power spectrum 850-hPa zonal wind (Figure 10). These findings
suggest that the wave-moisture coupling modulates the propagation speed and amplitude of the ISO mode
in the control simulation. Note that in the Fixed_LH experiment, the MJO-like ISO mode disappears (Figure 8f).

Figure 10. The regressionmap of precipitation (color), 850-hPa wind (vectors), and surface evaporation (contours) onto the
intraseasonal variability index time series in the noS, noL, and nuQ simulations. Dashed contours indicate negative values.
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The intraseasonal variability is dominated by westward propagating components. That disabling WISHE
feedback completely shuts off the MJO-like ISO mode with only minimal changes in the background state
(Figure 7) strongly suggests that the WISHE feedback is the key mechanism for the maintenance of the
MJO-like ISO mode. This may also suggest that the WISHE feedback prefers the wave number-1 mode, which
is consistent with the fact that the wave number-1 mode still exists in the Fixed_QLW simulation. Although,
the existence of wave number-1 mode in the Fixed_QLW simulation may also benefit from the absence of
zonal SST gradient, which, according to Maloney et al. (2010), could shift the dominant wave number toward
the lower ones.

In Figure 10, the horizontal structures of the ISO modes in the mechanism denial experiments are shown.
Note that results from Fixed_LH and Fixed_q are not shown because their regression maps do not show
any significant feature due to the lack of dominant wave signal. The Fixed_tau experiment shows a clear
wave number-1 structure in circulation, evaporation, and precipitation field. Evaporation leads precipitation
by about 90° in longitude. The convergence of low-level wind appears to be purely zonal, and no significant
meridional component is shown in the wind field. In contrast, the Fixed_QLW experiment shows a much smal-
ler scale in the regressed response of precipitation and evaporation. Wind field retains the wave number-1
structure, but the response is much weaker than that in other experiments. Note that Arnold and Randall
(2015) also found in their aquaplanet simulations that removing longwave cloud-radiation feedbacks weak-
ens the MJO-like variability. The Nudge_q simulation, on the other hand, exhibits wave number-1 structure in
all three fields, albeit the responses are weaker compared with the control simulation (Figure 4b).

Figure 11 shows vertical structures of the dominant ISO modes in the mechanism denial experiments. Again,
the Fixed_tau experiment exhibits well-defined wave number-1 structure. Low-level winds converge at the
location of enhanced convection, producing strong upward motion and a positive anomaly of specific
humidity, and upper winds diverge above the enhanced convection. Strong subsidence exists at the longi-
tudes about 180° away from the enhanced convection, producing a dry anomaly in the corresponding loca-
tion. Upwardmotion in the control simulation exhibits a slight eastward tilting with height in the columnwith
enhanced convection, but upward motions in the Fixed_tau run is upright in the center of convection.

The Fixed_QLW simulation, in contrast, exhibits weaker, more localized response in all fields. The upward
motion in Fixed_QLW tilts westward with height. The moisture anomaly near the center of enhanced convec-
tion appears as a narrow plume, and a weak dry anomaly exists to the immediate east of the moist anomaly.
The wind field in Fixed_QLW seems to have wave number-1 structure, but the downward motion to the
immediate east of upward motion anomalies is stronger than the downward motion response 180° away.
These features all suggest that eliminating radiation feedback leads to a shrinking in the spatial scale of
the ISO mode.

As expected, moisture anomalies are much weaker in the Nudge_q experiment than in the control simula-
tion. But the moisture field exhibits well-defined wave number-1 structure, with moist anomaly being in
the column with enhanced convection and dry anomaly 180° away. Moisture anomalies tilt westward with
height. Temperature anomalies exhibit a pattern similar to that in the control simulation. Wind field in the
Nudge_q experiment resembles that of the control simulation, with a clear wave number-1 structure.

5. Discussion

We find that the salient features of the aquaplanet ISO mode in the control simulation resemble that of the
WISHE-moisture mode of FR17. FR17 assumed a basic state that has no horizontal moisture gradient. This is
similar to our configuration with a flat SST in the deep tropics. This makes horizontal advection of moisture
play a negligible role in our aquaplanet ISO mode and in the WISHE-moisture mode of FR17. When a realistic
moisture gradient is considered, horizontal advection becomes a dominating mechanism for eastward pro-
pagation in a similar moisture mode model of Adames and Kim (2016).

Phase speed of the WISHE-moisture mode of FR17 increases with the moisture relaxation rate (their α para-
meter), which is equivalent to an inverse of the moisture relaxation time scale. In this sense, waves in our
Nudge_q and Fixed_q would experience a shorter relaxation time scale, hence a greater moisture relaxation
rate. Indeed, the moisture relaxation time scale, computed with 20- to 100-day band-passed tropical precipi-
tation and precipitable water, in our control, Nudge_q, and Fixed_q simulations are 32.6, 24.6, and 10.4 hr,
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respectively. Therefore, the increases in the phase speed of the aquaplanet ISO mode in the Nudged_q and
Fixed_q experiments are consistent with what FR17’s dispersion relationship of the WISHE-moisture
mode predicts.

In theWISHE-moisture mode of FR17, theWISHEmechanism is the only necessary process for instability while
the cloud-radiation interaction could also provide an additional amplifying mechanism. In our mechanism
denial simulations, the aquaplanet-simulated ISO mode disappears only when the WISHE mechanism is
turned off (Fixed_LH). When the longwave cloud-radiation interaction is disabled, the variance of the ISO
modewas weakened, and intraseasonal variability still maximizes at wave number 1 (Fixed_QLW), again being
consistent with the WISHE-moisture mode of FR17. Unlike the WISHE-moisture mode of FR17, in which the
scale selection of a wave number-1 mode is more pronounced without the cloud-radiation interaction

Figure 11. Regression map of mass flux (ρu and ρw), specific humidity (q; color shading), and temperature (T; contours)
within 5°S and 5°N onto the time series of ISV index. The unit of q is g/kg. Contour interval for T is 0.1 K; ρw is multiplied
by a factor of 250 for better visualization.
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(FR17’s Figure 2), however, the results of the Fixed_QLW experiment suggest that the cloud-radiation
feedbacks also play an important role in the scale selection of the aquaplanet ISO mode.

The results from the Nudge_q and Fixed_q experiments can also be shown to be consistent with the FR17
framework. We will modify their moisture equation (equation 11 in FR17) to include the nudging term used
in our experiments:

∂q
0

∂t
¼ w

0
Γq � sq � q

0

τn
: (5)

The right-hand side terms are vertical moisture advection with Γq being the vertical moisture gradient, the
moisture sources and sinks sq, and the moisture nudging term where τn is a nudging time scale. In this sim-
plified framework, adding the nudging term can be considered as increasing the GMS Γ . We can define a new
GMS Γ*that incorporates the effects of moisture nudging, which is expressed as follows:

Γ� ¼ Γ þ 1eατn ; (6)

whereeα is a moisture relaxation time scale, which is inversely proportional to the convective moisture adjust-
ment time scale τc (Adames & Kim, 2016, Jiang et al., 2016). The dispersion relation for the v = 0 case dis-
cussed in FR17 with the new GMS is as follows (their equation 25)

Ω3 þ iαΩ2 � κ2Ω ¼ �ακ Λþ iΓ �κð Þ; (7)

where Ω is a nondimensional frequency, α is a nondimensional convective relaxation frequency, and κ is a
nondimensional zonal wave number. The dispersion relation for values of Γ*of 0, 0.1, and 0.2 are shown in
Figure 12. Consistent with the results from the Nudge_q and Fixed_q experiments (Figure 8), we see that
the moist wave accelerates and exhibits weaker growth. Thus, the FR17 model can explain not only the
results of the Fixed_LH experiment but also explains results of the Nudge_q and Fixed_q experiments.

6. Summary and Conclusions

In this study, we attempted to understand the nature of intraseasonal variability in an aquaplanet simulation
whose spectral character resembles that of the observed MJO. The aquaplanet simulation was performed
using GFDL’s atmosphere model AM2.1 with a flat SST distribution in the deep tropics. The MJO-like ISO

Figure 12. Frequency (left) and growth rate (right) of the growing mode obtained from the dispersion relation in equa-
tion (7). The lines correspond to the solutions for Γ*values of 0, 0.1, and 0.2, respectively. Darker red shading indicates a
larger value of Γ*. All other values used here are as in FR17.
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mode that appeared in the aquaplanet simulation propagates eastward with a period of about 60 days and is
spatially dominated by wave number-1 structures. In order to gain insight into the propagation mechanism
of the ISO mode, we examined a vertically resolved moisture budget of the ISO mode. We also performed a
series of mechanism denial experiments to shed light on the macroscopic feedback processes controlling the
wave characteristics of the ISO mode.

The column-integrated MSE budget of the aquaplanet-simulated ISOmode suggested that enhanced surface
evaporation to the east of anomalous convection leads the eastward propagation of the ISO mode.
Horizontal advection of MSE causes a weak drying tendency to the east of enhanced convection. It is worth-
while to mention that despite their similar wave characteristics, the aquaplanet-simulated ISO mode and the
observed MJO show a stark contrast in their moisture budget. Most notably, horizontal advection of MSE
causes a weak drying tendency to the east of enhanced convection in the aquaplanet ISO mode, a feature
that is distinct from that of the observed MJO, in which horizontal MSE advection plays the dominant role
in the propagation of the MJO. Also, enhanced surface evaporation is centered to the east of enhanced con-
vection in the MJO-like ISO mode, while the opposite phase relation is true in the observed MJO. This differ-
ence could be a reflection of the mean state differences in the model and observations, or differences in the
dynamics. Either difference could potentially explain why AM2.1 does not produce MJO-like variability with a
realistic configuration, but produces a strong ISO in the simplified configuration analyzed here.

In the mechanism denial experiments, the interactions of waves with (i) free-tropospheric moisture, (ii) sur-
face wind stress, (iii) longwave radiative heating, and (iv) surface latent heat flux are suppressed or inhibited
to illuminate the roles that individual processes play in determining the characteristics of the ISO mode. The
results of the mechanism denial experiments are summarized in the following.

• The wave-moisture coupling affects the phase speed of the ISOmode, which increases progressively as the
moisture is decoupled from the wave (Nudged_q and Fixed_q).

• The role of surface wind stress is insignificant. An MJO-like ISO mode appears even without interactive sur-
face wind stress (Fixed_tau) and its wave characteristics are almost identical to that in the control simula-
tion. This result suggests that frictional moisture convergence is not central to the simulated ISO.

• The longwave radiative feedbacks are essential in the scale selection of the MJO-like ISO mode. When the
longwave cloud-radiation feedbacks are disabled (Fixed_QLW), the intraseasonal variability of precipitation
is spread between wave numbers 1 and 6, instead of concentrating on wave number 1. The longwave
cloud-radiative feedbacks strength is scale selective in general, as suggested by observations (Adames &
Kim, 2016). However, the radiative feedback parameter peaks at zonal wave numbers 2 and 3 in lieu of
1, implying that cloud-radiation feedbacks are not the only mechanism responsible for the scale selection
of the ISO mode.

• The surface latent heat flux feedbacks are found to be critical to the aquaplanet-simulated ISO mode,
which disappears when surface evaporation is noninteractive (Fixed_LH).

The results of our MSE budget analysis and mechanism denial experiments collectively suggest that the ISO
mode in the control simulation is a mode whose existence relies on the surface latent heat flux feedbacks,
whose scale is set by the surface latent heat flux and cloud-radiation feedbacks, and whose propagation
speed is determined by its coupling with moisture and hence convection. These salient features of the aqua-
planet ISO mode resemble that of the WISHE-moisture mode of Fuchs and Raymond (2017). Based on our
results, it was hypothesized that the aquaplanet-simulated ISOmode in the control simulation is a manifesta-
tion of the WISHE-moisture mode of Fuchs and Raymond (2017).

It is worthwhile to note that the effects of specific feedback processes (e.g., cloud-radiation feedbacks and
WISHE) on the simulated ISO mode in a model would be strongly dependent on the way the model repre-
sents relevant subgrid-scale processes. For example, the longwave cloud-radiation feedbacks would be stron-
ger if themodel convection scheme detrains more water vapor and cloud hydrometeors in the upper levels, if
the upper clouds are optically thicker and last longer. Likewise, the strength of WISHE would be affected by
the boundary layer and surface flux schemes. Performing the mechanism denial simulations using multiple
models would help reduce the uncertainty associated with those in the parameterization schemes.

Aquaplanet simulations have become a popular framework in which one can study atmospheric phenomena
in a simpler environment (Blackburn & Hoskins, 2013). The current study presented another example of how
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such a framework can be useful in understanding tropical intraseasonal variability. Our results strongly sug-
gest that the WISHE-moisture mode of FR17 exists, while leaving another important question unanswered: Is
the aquaplanet-simulated ISO mode a manifestation of the observed MJO or a different mode? If the
observed MJO is indeed a WISHE-moisture mode, it probably means that the WISHE feedback is central to
the observed MJO, with the cloud-radiation feedback playing a secondary role in the scale selection mechan-
ism. In this case, it is possible that the WISHE feedback is somehow too weak or some other misrepresented
circulation details suppress it significantly when AM2.1 is run with realistic configuration, and therefore, the
model no longer exhibits the MJO. Another possibility is that the WISHE feedback is not the dominant
mechanism for the observed MJO, which implies that the aquaplanet-simulated ISO mode is not exactly a
manifestation of the observed MJO. If the eastward propagation of the observed MJO is dominated by some
other mechanisms, such as horizontal advection processes which are extremely weak in our aquaplanet
simulations, it is impossible to simulate the MJO with our experimental design (flat tropical SST). The lack
of the MJO in the simulation with realistic topography and SST can then probably be explained by biases
in the horizontal moisture gradient. It is worth noting that a study by Leroux et al. (2016) found that some
models are able to simulate ISO when they have a warm pool and not with zonally symmetric SST conditions,
suggesting that the horizontal distribution of the boundary condition can influence whether or not a model
can represent an MJO-like ISO mode. Further modeling and theoretical studies are warranted to address this
important question.
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