• Wang, Y., H. Li, X. Shi, J. Fung, 2024: Assessing the Impact of Cumulus Convection and Turbulence Parameterizations on Typhoon Precipitation Forecast, Geophys. Res. Lett., in press

  • Li, M., X. Shi., Z. Lu, Z. Kapelan, 2024: Predicting the Urban Stormwater Drainage System State using the Graph-WaveNet, Sustain. Cities Soc., 115, 105877, https://doi.org/10.1016/j.scs.2024.105877. [PDF]

  • Chen, H., X. Shi, X. Nie, Y. Wang, C. Leung, P. Cheung, and P.W. Chan, 2024: Tropical Aviation Turbulence Induced by the Interaction between a Jet Stream and Deep Convection. J. Geophys. Res.: Atmospheres, 129, e2024JD040763. https://doi.org/10.1029/2024JD040763. [PDF]

  • Huang, Y., D. Kim, T. Zhou, and X. Shi, 2024: The Role of Cloud-Radiative Interaction in Tropical Circulation and the Madden-Julian Oscillation. J. Climate, 37, 4559–4576, https://doi.org/10.1175/JCLI-D-23-0736.1. [PDF]

  • Shi, X., Y. Liu, J. Chen, H. Chen, Y. Wang, Z. Lu, R.Q. Wang, J. Fung, C. W.W. Ng, 2024: Escalating Tropical Cyclone Precipitation Extremes and Landslide Hazards in South China under Global Warming. npj Clim. Atmos. Sci., 7, 107, https://doi.org/10.1038/s41612-024-00654-w. [PDF]

  • Chen, J. and X. Shi, 2023: Quantifying Global-Warming Response of the Orographic Precipitation in a Typhoon Environment with Large-Eddy Simulations. J. Climate, 36, 6951-6966, https://doi.org/10.1175/JCLI-D-23-0018.1. [PDF]

  • Wang, Y., Z. Zhang, W.S. Chow, Z. Wang, J.Z. Yu, J. C.-H. Fung, and X. Shi, 2023: Investigating the Effect of Aerosol Uncertainty on Convective Precipitation Forecasting in South China’s Coastal Area. J. Geophys. Res.: Atmospheres, 128, e2023JD038694. https://doi.org/10.1029/2023JD038694. [PDF]

  • Qu, Y. and X. Shi, 2023: Can a Machine-Learning-Enabled Numerical Model Help Extend Effective Forecast Range through Consistently Trained Subgrid-Scale Models? Artif. Intell. Earth Syst., 2(1), e220050. [PDF]

  • Shi, X. and Y. Wang, 2022: Impacts of Cumulus Convection and Turbulence Parameterizations on the Convective-Permitting Simulation of Typhoon Precipitation, Mon. Wea. Rev., 150(11). 2977-2997. https://doi.org/10.1175/MWR-D-22-0057.1 [PDF]

  • Wang, Y., X. Shi, L. Lei, and J. C. Fung, 2022: Deep-Learning Augmented Data Assimilation: Reconstructing Missing Information with Convolutional Autoencoders, Mon. Wea. Rev., 150(8), 1977-1991. https://doi.org/10.1175/MWR-D-21-0288.1. [PDF]

  • Fan, Y., Y. T. Cheung, X. Shi, 2021: The Essential Role of Cloud-Radiation Interaction in Nonrotating Convective Self-Aggregation, Geophys. Res. Lett., 48, e2021GL095102. https://doi.org/10.1029/2021GL095102. [PDF]

  • Shi, X., and Y. Fan, 2021: Modulation of the Bifurcation in Radiative-Convective Equilibrium by Gray-Zone Cloud and Turbulence Parameterizations, J. Adv. Model. Earth Syst., 13, e2021MS002632. https://doi.org/10.1029/2021MS002632. [PDF]

  • Lestari, D. V., and X. Shi, 2021: Sensitivity of the Short-Range Precipitation Forecast in SouthChina Region to Sea Surface Temperature Variations, Atmosphere, 12(9), 1138. https://doi.org/10.3390/atmos12091138. [PDF]

  • Shi, X., 2020: Enabling Smart Dynamical Downscaling of Extreme Precipitation Events With Machine Learning, Geophys. Res. Lett., 47, e2020GL090309. https://doi.org/10.1029/2020GL090309. [PDF] [Code]

  • Shi, X., R. M. Enriquez, R. L. Street, G. H. Bryan, and F. K. Chow, 2019: An Implicit Algebraic Turbulence Closure Scheme for Atmospheric Boundary Layer Simulation, J. Atmos. Sci., 76, 3367–3386. [PDF]

  • Su, L., J. Li, X. Shi, and J. C. H. Fung, 2019: Spatiotemporal Variation in Pre-summer Precipitation Over South China From 1979 to 2015 and Its Relationship With Urbanization, J. Geophys. Res., 124. https://doi.org/10.1029/2019JD030751. [PDF]

  • Chow, F. K, C. Schar, N. Ban, K. Lundquist, L. Schlemmer and X. Shi, 2019: Crossing Multiple Gray Zones in the Transition From Mesoscale to Microscale Simulation Over Complex Terrain, Atmosphere, 10, 274; doi:10.3390/atmos10050274. [PDF]

  • Shi, X., F. K. Chow, R. L. Street and G. H. Bryan, 2019: Key Elements of Turbulence Closures for Simulating Deep Convection at Kilometer-Scale Resolution, J. Adv. Model. Earth Syst., 11. https://doi.org/10.1029/2018MS001446. [PDF]

  • Shi, X., D. Kim, Á. F. Adames, J. Sukhatme, 2018: WISHE-Moisture Mode in an Aquaplanet Simulation, J. Adv. Model. Earth Syst., 10. https://doi.org/10.1029/2018MS001441. [PDF]

  • Shi, X., F. K. Chow, R. L. Street and G. H. Bryan, 2018: An Evaluation of LES Turbulence Models for Scalar Mixing in the Stratocumulus-Capped Boundary Layer, J. Atmos. Sci., 75, 1499-1507. [PDF]

  • Shi, X., H. L. Hagen, F. K. Chow, G. H. Bryan and R. L. Street, 2018: Large-Eddy Simulation of the Stratocumulus-Capped Boundary Layer with Explicit Filtering and Reconstruction Turbulence Modeling, J. Atmos. Sci., 75, 611-637. [PDF]

  • Shi, X. and D. R. Durran, 2016: Sensitivities of Extreme Precipitation to Global Warming Are Lower over Mountains than over Oceans and Plains, J. Climate, 29, 4779-4791. [PDF]

  • Shi, X. and D. R. Durran, 2015: Estimating the Response of Extreme Precipitation over Mid-latitude Mountains to Global Warming, J. Climate, 28, 4246-4262. [PDF]

  • Shi, X. and C. S. Bretherton, 2014: Large Scale Character of an Atmosphere in Rotating Radiative-Convective Equilibrium. J. Adv. Model. Earth Syst., 06. [PDF]

  • Shi, X. and D. R. Durran, 2014: The Response of Orographic Precipitation over Idealized Mid-Latitude Mountains Due to Global Increases in CO2. J. Climate, 27, 3938-3956. [PDF]